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Abstract
Machine learning and artificial intelligence (ML/AI) methods have been used successfully in recent years to solve

problems in many areas, including image recognition, unsupervised and supervised classification, game-playing, system

identification and prediction, and autonomous vehicle control. Data-driven machine learning methods have also been

applied to fusion energy research for over 2 decades, including significant advances in the areas of disruption prediction,

surrogate model generation, and experimental planning. The advent of powerful and dedicated computers specialized for

large-scale parallel computation, as well as advances in statistical inference algorithms, have greatly enhanced the

capabilities of these computational approaches to extract scientific knowledge and bridge gaps between theoretical models

and practical implementations. Large-scale commercial success of various ML/AI applications in recent years, including

robotics, industrial processes, online image recognition, financial system prediction, and autonomous vehicles, have further

demonstrated the potential for data-driven methods to produce dramatic transformations in many fields. These advances,

along with the urgency of need to bridge key gaps in knowledge for design and operation of reactors such as ITER, have

driven planned expansion of efforts in ML/AI within the US government and around the world. The Department of Energy

(DOE) Office of Science programs in Fusion Energy Sciences (FES) and Advanced Scientific Computing Research

(ASCR) have organized several activities to identify best strategies and approaches for applying ML/AI methods to fusion

energy research. This paper describes the results of a joint

FES/ASCR DOE-sponsored Research Needs Workshop on

Advancing Fusion with Machine Learning, held April 30–

May 2, 2019, in Gaithersburg, MD (full report available at

https://science.osti.gov/-/media/fes/pdf/workshop-reports/

FES_ASCR_Machine_Learning_Report.pdf). The work-

shop drew on broad representation from both FES and

ASCR scientific communities, and identified seven Priority

Research Opportunities (PRO’s) with high potential for

advancing fusion energy. In addition to the PRO topics

themselves, the workshop identified research guidelines to

maximize the effectiveness of ML/AI methods in fusion

energy science, which include focusing on uncertainty
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quantification, methods for quantifying regions of validity of models and algorithms, and applying highly integrated teams

of ML/AI mathematicians, computer scientists, and fusion energy scientists with domain expertise in the relevant areas.

Keywords Fusion science � Artificial intelligence � Machine learning � Scientific discovery

Executive Summary

Background and Motivation

The pursuit of fusion energy has required extensive

experimental and theoretical science activities to develop

the knowledge needed that will enable design of successful

fusion power plants. Even today, following decades of

research in many key areas including plasma physics and

material science, much remains to be learned to enable

optimization of the tokamak or other paths to fusion

energy. Data science methods from the fields of machine

learning and artificial intelligence (ML/AI) offer opportu-

nities for enabling or accelerating progress toward the

realization of fusion energy by maximizing the amount and

usefulness of information extracted from experimental and

simulation output data. Jointly supported by the Depart-

ment of Energy Offices of Fusion Energy Science (FES)

and Advanced Scientific Computing Research (ASCR), a

workshop was organized to identify Priority Research

Opportunities (PRO’s) for application of ML/AI methods

to enable accelerated solution of fusion problems. The

resulting ‘‘Advancing Fusion with Machine Learning

Research Needs Workshop,’’ held in Gaithersburg, MD,

April 30–May 2, 2019, brought together * 60 experts in

fields spanning fusion science, data science, statistical

inference and mathematics, machine learning, and artificial

intelligence, along with DOE program managers and

technical experts, to identify key PRO’s.

Priority Research Opportunities

The goals of the ML workshop were to assess the potential

for application of ML/AI methods to achieve transforma-

tive impacts on FES research, and identify research needs,

opportunities, and associated gaps in ML and AI areas that

would help address fusion energy problems through tar-

geted partnerships between fusion scientists and applied

mathematicians or computer scientists.

Seven PROs were identified, including three in each of

two broad categories: Accelerating Science, and Enabling

Fusion (see the PRO summary table). The seventh, cross-

cutting, PRO consists of research and development to

provide computational and database resources that support

the execution of the other six PRO’s. The PRO’s identified

are:

PRO 1: Science Discovery with Machine Learning

includes approaches to bridge gaps in theoretical under-

standing through identification of missing effects using

large datasets; accelerating hypothesis generation and

testing; and optimizing experimental planning to help

speed up progress in gaining new knowledge. This

approach to supporting and accelerating the scientific

process itself has already proven to be among the most

successful applications of ML/AI methods in many fields.

PRO 1 research activities may result in theory-data hybrid

models describing such important physics areas as tokamak

confinement, resistive magnetohydrodynamic stability, and

plasma-wall interactions. Priority planning of magnetic

confinement experiments can help maximize the effective

use of limited machine time.

PRO 2: Machine Learning Boosted Diagnostics involves

application of ML methods to maximize the information

extracted from measurements, enhancing interpretability

with data-driven models, systematically fusing multiple

data sources, and generating synthetic diagnostics that

enable the inference of quantities that are not directly

measured. For example, the additional information

extracted from diagnostic measurements may be included

as data input to supervised learning (e.g. classification)

methods, thus improving the performance of such methods

for a host of cross-cutting applications. Examples of

potential research activities in this area include data fusion

to infer detailed 3D MHD modal activity from many

diverse diagnostics, enhancing 3D equilibrium recon-

struction fidelity, extracting meaningful physics from

extremely noisy signals, and automatically identifying

important plasma states and regimes for use in supervised

learning.

PRO 3: Model Extraction and Reduction includes con-

struction of models of fusion systems and plasmas for

purposes of both enhancing our understanding of complex

processes and the acceleration of computational algo-

rithms. Data-driven models can help make high-order

behaviors intelligible, expose and quantify key sources of

uncertainty, and support hierarchies of fidelity in computer

codes for whole device modeling. Furthermore, effective

model reduction can shorten computation times for multi-

scale/multi-physics simulations. Work in the areas covered

by this PRO may enable faster than real-time execution of

tokamak simulations, derivation and improved under-

standing of empirical turbulent transport coefficients, and

derivation of accurate but rapidly-executing models of
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plasma heating and current drive effects for RF and other

sources.

PRO 4: Control Augmentation with Machine Learning

identifies three broad areas of plasma control research that

will benefit significantly from augmentation through ML/

AI methods. Control-level models, an essential require-

ment of model-based design for plasma control, can be

improved through data-driven methods, particularly where

first-principle physics descriptions are insufficient. Real-

time data analysis algorithms designed and optimized for

control through ML/AI can enable such critical functions

as evaluation of proximity to MHD stability boundaries

and identification of plasma responses for adaptive regu-

lation. Finally, the ability to optimize plasma discharge

trajectories for control scenarios using algorithms derived

from large databases can significantly augment traditional

design approaches. The combination of control mathe-

matics with ML/AI approaches to managing uncertainty

and ensuring operational performance may enhance the

already central role control solutions play in establishing

the viability of a fusion power plant.

PRO 5: Extreme Data Algorithms includes two principal

research and development components: methods for in situ,

in-memory analysis and reduction of extreme scale simu-

lation data, and methods for efficient ingestion and analysis

of extreme-scale fusion experimental data into the new

Fusion Data ML Platform (see PRO 7). These capabilities,

including improved file system and preprocessing capa-

bilities, will be necessary to manage the amount and speed

of data that is expected to be generated by the many fusion

codes that use first-principle models when they run on

exascale computers. In particular, the scale of data gener-

ation in ITER is anticipated to be several orders of mag-

nitude greater than encountered today. ML-derived

preprocessing algorithms can increase the throughput and

efficiency of collaborative scientific analysis and interpre-

tation of discharge data as it is produced, while further

enhancing interpretability through optimized combination

with simulation results.

PRO 6: Data-Enhanced Prediction will develop algo-

rithms for prediction of key plasma phenomena and plant

system states, thus enabling critical real-time and offline

health monitoring and fault prediction. ML methods can

significantly augment physics models with data-driven

prediction algorithms to provide these essential functions.

Disruptions represent a particularly essential and chal-

lenging prediction requirement for a fusion power plant,

since without effective avoidance or effects mitigation,

they can cause serious damage to plasma-facing compo-

nents. Prevention, avoidance, and/or mitigation of disrup-

tions will be enabled or enhanced if the conditions leading

to a disruption can be reliably predicted with lead time

sufficient for effective control action. In addition to

algorithms for real-time or offline plasma or system state

prediction, data-derived algorithms can be used for pro-

jection of complex fault and disruption effects for purposes

of design and operational analysis, where such effects are

difficult to derive from first principles.

PRO 7: Fusion Data Machine Learning Platform con-

stitutes a unique cross-cutting collection of research and

implementation activities aimed at developing specialized

computational resources that will support scalable appli-

cation of ML/AI methods to fusion problems. The Fusion

Data Machine Learning Platform is envisioned as a novel

system for managing, formatting, curating, and enabling

access to fusion experimental and simulation data for

optimal usability in applying ML algorithms. Tasks of this

PRO will include the automatic population of the Fusion

Data ML Platform, with production and storage of key

metadata and labels, as well as methods for rapid selection

and retrieval of data to create local training and test sets.

Foundational Activities and Conclusion

In addition to these seven PROs, a set of foundational

activities and resources were identified as essential to the

execution of effective ML/AI research that would address

fusion problems. These foundational activities and

resources include experimental fusion facilities and ongo-

ing research, advances in theoretical fusion science and

computational simulation, high performance and exascale

computing resources, established and supported connec-

tions among university, industry, and government expert

groups in the relevant fields, and establishing connections

to ITER and other international fusion programs.

The set of high-impact PROs identified in the Advanc-

ing Fusion with Machine Learning Research Needs

Workshop, together with the foundational activities high-

lighted, will significantly accelerate and enhance research

towards solving outstanding fusion problems, helping to

maximize the rate of knowledge gain and progress toward a

fusion power plant.

Summary of Priority Research Opportunities identified

in Advancing Fusion with Machine Learning Research

Needs Workshop.

Introduction

Background and Motivation

Dealing with all aspects associated with the generation,

movement, and analysis of large sets of data (‘‘big data’’)

has emerged as a critical issue for fusion and plasma sci-

ence research. This need is driven by new modes and

opportunities of research coupled with the emergence of
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more powerful computers, and has led to rapid growth in

the adoption of artificial intelligence (AI) techniques and

methodologies, including Machine Learning (ML), in the

research areas supported by the Department of Energy

(DOE) Office of Science (SC) program in Fusion Energy

Sciences (FES). Examples of big data science drivers for

FES include:

• Collaborations by U.S. scientists on a new generation of

overseas superconducting fusion experiments whose

pulse lengths are at least an order of magnitude longer

than those of current experiments and with additional

diagnostic capabilities, leading to a considerable

increase of the volume of experimental data, culminat-

ing with the anticipated initial operation of the world’s

first burning plasma experiment—ITER—in 2025;

• Increases in the repetition rate of powerful laser systems

coupled to x-ray drivers in the area of high energy

density laboratory plasmas (HEDLP). The upgrade of

the Linac Coherent Light Source (LCLS) at SLAC will

increase the repetition rate from 1 kHz to 1 MHz.

Future experiments at the Matter in Extreme Conditions

(MEC) instrument will have to deal with big data

acquired at a rate of terabytes per second compared to

the current rate of megabytes per second.

• Increases in the fidelity and level of integration of

fusion and plasma science simulations needed to

resolve multiphysics and multiscale problems, which

are enabled by advances in high performance comput-

ing hardware and associated progress in computational

algorithms, and which are accompanied by orders of

magnitude increases in the volume of generated data.

This need is also expected to increase as the fusion

energy sciences program focuses on the development of

modeling capabilities and preparing to take advantage

of the soon-to-be available exascale computing

systems.

• The potential of ML methodologies to address critical

challenges in fusion energy science, such as the

prediction of potentially disruptive plasma phenomena

in tokamaks.

• The potential of ML and AI to optimize the perfor-

mance of fusion experiments using real-time analysis of

diagnostic data, and through expanded integration of

first principles and reduced plasma models into

advanced control algorithms.

At the same time, the DOE SC program in Advanced

Scientific Computing Research (ASCR) has been support-

ing foundational research in computer science and applied

mathematics to develop robust ML and AI capabilities that

address the needs of multiple SC programs.

Because of their transformative potential, ML and AI

are also among the top Research and Development (R&D)

priorities of the Administration as described in the July 31,

2018, Office of Management and Budget (OMB) Memo on

the FY 2020 Administration R&D Budget Priorities [51],

where fundamental and applied AI research, including

machine learning, is listed among the areas where contin-

ued leadership is critically important to our nation’s

national security and economic competitiveness.

Finally, the Fusion Energy Sciences Advisory Com-

mittee (FESAC), in its 2018 report on ‘‘Transformative

Enabling Capabilities (TEC) for Efficient Advancement

Toward Fusion Energy,’’ [15], included the areas of

mathematical control, machine learning, and artificial

intelligence as part of its Tier 1 ‘‘Advanced Algorithms’’

TEC recommendation.

Purpose of Workshop and Charge

The fusion and plasma science communities, recognizing

the potential of ML/AI and data science more broadly,

have organized a number of information-gathering activi-

ties in these areas. These include IAEA Technical Meetings

on Fusion Data Processing Validation and Analysis, Sci-

entific Discovery through Advanced Computing (SciDAC)

project meetings focused on ML, and a mini-conference on

‘‘Machine Learning, Data Science, and Artificial Intelli-

gence in Plasma Research’’ held during the 2018 meeting

of the APS Division of Plasma Physics (DPP). However, a

need remained to assess the potential for ML/AI impacting

key research problems in these communities in order to

identify gaps and opportunities, and derive maximum

benefit from synergies. This report describes the results of a

joint FES/ASCR DOE-sponsored Research Needs Work-

shop on Advancing Fusion with Machine Learning, held

April 30–May 2, 2019, in Gaithersburg, MD.

The objectives of the workshop were to:

• Identify areas in the fusion science supported by FES

(including burning plasma science/materials science,

and discovery plasma science) where application of ML

and AI can have transformative impacts;

• Identify unique needs, research opportunities, and

associated gaps in ML and AI that can be addressed

through targeted partnerships between fusion and

plasma scientists on the one hand and applied mathe-

maticians or computer scientists on the other, to

broaden the applicability of ML/AI solutions across

all areas under the FES mission;

• Identify synergies and leverage opportunities within SC

and DOE and also outside DOE, including private

industry; and

• Identify research principles for maximizing effective-

ness of applying ML methods to fusion problems.
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The workshop identified a set of seven Priority Research

Opportunities (PROs) that can inform future research

efforts in ML/AI and build a community of next-generation

researchers in this area. Section 3 following describes these

PRO’s in detail. Section 4 describes foundational and

supporting programmatic activities that are essential to

enable effective application of ML/AI methods to research

areas identified. Section 5 provides a summary of key

results and conclusions from the study.

Priority Research Opportunities

The Priority Research Opportunities identified in the

workshop and below are areas of research in which

advances made through application of ML/AI techniques

can enable revolutionary, transformative progress in fusion

science and related fields. These research areas balance the

potential for fusion science advancement with the tech-

nology requirements of the research. Each description

includes a summary of the research topic, a discussion of

the fusion problem elements involved, identification of key

gaps in relevant ML/AI methods that should be addressed

to enable application to the PRO, and identification of

guidelines that can help maximize the effectiveness of the

research in each case.

PRO 1: Science Discovery with Machine Learning

The scientific process constitutes a virtuous cycle of data

interpretation to generate models and hypotheses, appli-

cation of models to design experiments, and experimental

execution to generate the data to test hypotheses and revise

models. The introduction of ML and AI into the scientific

process for hypothesis generation and the design of

experiments promises to significantly accelerate this cycle.

Traditionally, bottlenecks in the scientific process have

included insufficient data, insufficient access to experi-

mental facilities, and the speed at which data can be ana-

lyzed to generate revised models and the next hypotheses.

Machine learning has already demonstrated promise in

accelerating the analysis of data and the generation of data-

driven models (e.g. [20, 49]), but the anticipated increase in

our ability to generate data and the latency of human-in-

the-loop hypothesis generation and experimental design

will continue to limit our scientific throughput. The vision

of this PRO is an integrated process that helps guide,

optimize, automate and improve the effectiveness of lab-

oratory and numerical experiments, and augments data

analysis and hypothesis generation to accelerate scientific

discovery (Fig. 1).

Fusion Problem Elements

The ultimate goal of plasma confinement research is the

attainment of the conditions needed for sustained, con-

trolled fusion. Unfortunately, the high-dimensional space

of parameters describing possible plasma confinement

conditions makes the optimization of performance difficult,

and our incomplete understanding of the many competing

physical processes further hampers our progress. The sci-

entific process of making a hypothesis, performing exper-

iments to test it, and improving the understanding of the

underlying physics based on the results is well established.

However, in fusion, performing experiments is often costly

and rare, and although experimentation is guided by sim-

ulations and physics knowledge, the characteristic time

scale of each cycle of the scientific process can be weeks to

years. The ability to prioritize and plan experiments in

order to maximize potential knowledge gain and optimize

the effectiveness of costly operations can significantly

accelerate convergence toward viable fusion energy. Inte-

gration of human assessments and statistical inference from

data mining has accelerated progress in the confinement of

merged compact toroid plasmas [5]. Machine learning

approaches applied to design, selection, and steering of

tokamak experiments hold promise for similar advances in

key plasma performance metrics.

The process of science discovery in fusion (and beyond)

is frequently challenged by gaps between the current

understanding of first principles and the observed behavior

of experimental systems. Machine learning methods can

help bridge such gaps by identifying aspects of missing

physics and producing hybrid models that can be used in

both guiding experiment and completing theory. Gaps in

understanding in fields ranging from plasma transport

theory to resistive MHD instabilities may benefit from such

approaches.

Progress could also be greatly accelerated if analysis and

interpretive simulation could be performed in closer to real

Fig. 1 Scientific discovery with machine learning includes

approaches to bridging gaps in theoretical understanding through

the identification of missing effects using large datasets; accelerating

hypothesis generation and testing; and optimizing experimental

planning to help speed up progress in gaining new knowledge
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time. By building data-driven models based on prior

experiments, existing simulations, and incoming experi-

mental results that could be refined iteratively, we could

more efficiently explore the space of possible plasma

confinement conditions. Experimentalists would be able to

make better use of the limited facility availability by

learning on the fly and adjusting their experimental con-

ditions with greater speed and intent. By taking a step

further and incorporating AI into the process, experimen-

tation could be accelerated even more through the freedom

of intelligent agents to pose new hypotheses based on the

entirety of available data and even to run preliminary

experiments to further aid experimentalists.

Machine Learning Methods

ML and related fields, like data mining, provide methods

for classification, regression, clustering, feature identifica-

tion, and dimensionality reduction. Fusion experimental

campaigns could benefit greatly from the ability to auto-

matically classify or cluster experimental results; build

predictive models from data that can be interrogated to

identify fruitful future directions for experiments; identify

features or anomalies that correlate with improved fusion

performance; and identify lower dimensional (invariant

manifold) structure in high dimensional data.

For example, random forest algorithms have been

applied to the development of porous materials to identify

effective input variables and accelerate progress toward

desirable performance [49]. Deep learning techniques have

also amplified small signals in large datasets to illuminate

correlations and trends otherwise not visible [33, 66].

Machine learning has already exhibited utility in opti-

mizing fusion experiments, with demonstrated improve-

ments to fusion performance in both magnetic [5] and

inertial [20] confinement approaches. Techniques applied

have included algorithms for directing the experimental

conditions themselves, as well as hybrid ML models that

combine simulation and experimental data and which were

sufficiently generalizable to guide the optimization of new

experiments. Statistical and reinforcement learning tech-

niques [47] for reasoning and planning could be leveraged

to take these existing efforts to the next level, where

intelligent agents aid the experimentalist by taking learned

features, correlations, etc. and proposing the most benefi-

cial next experiments—perhaps even conducting some

preliminary experiments without human intervention.

Beyond accelerating the experimental process, ML

techniques could also uncover the physics of the gap

between physics models and experimental data. The use of

hybrid models, i.e., transformation layers that map simu-

lation predictions to experimental reality [17, 34], can yield

insights into the physics that is missing from simulations

[20]. Separately, one could use ML to reveal correlations in

the differences between modeled and measured data to

discover features that provide insight into physics missing

in existing models.

A range of ML algorithms for feature identification and

selection and for data reduction will be applicable here.

These include, for example, Principal Component Analysis

(PCA) and its variants, random forests, and neural network-

based autoencoders, with the objective of identifying cor-

relations between identified features. For example,

autoencoders could be combined with physically mean-

ingful latent variables in order to generate falsifiable

hypotheses, e.g., to test scaling laws, which in turn can be

used to generate experiments.

Gaps

Perhaps the biggest obstacle in applying new techniques

from data science for hypothesis generation and experi-

mental design is the availability of data. First, despite the

sense that we are awash in data, in reality, we often have

too little scientific data to properly train models. In fusion,

experimental data is limited by available diagnostics,

experiments that cannot be reproduced at a sufficient fre-

quency, and a lack of infrastructure and policies to easily

share data. Furthermore, even with access to the existing

data, there is still the obstacle that these data have not been

properly curated for easy use by others (see PRO 7).

Beyond building the necessary infrastructure, there are

other beneficial circumstances that will help apply data

science to hypothesis generation and experimental design.

First, new sensors and experimental capabilities, like high

repetition rate lasers, promise to increase the experimental

Fig. 2 A supervised machine learning algorithm trained on a multi-

petabyte dataset of inertial confinement fusion simulations has iden-

tified a class of implosions predicted to robustly achieve high yield,

even in the presence of drive variations and hydrodynamic perturba-

tions [57]
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throughput rate. ML techniques like transfer learning are

also showing some promise in fine-tuning application-

specific models on the upper layers of neural networks

developed for other applications where data is abundant

[17, 34]. Finally, fusion has a long history of numerical

simulation, and there have been recent successes in using

simulation data constrained by experimental data to build

data-driven models [57] (Fig. 2).

Aside from the availability of data, there is still much

work to be done in ML and AI to improve the techniques

and make their use more systematic. It is well known that

many ML methods have low accuracy and suffer from a

lack of robustness—that is, they can be easily tricked into

misclassifying an image or fail to return consistent results

if the order of data in the training process is permuted

[50, 69]. Furthermore, most learning methods fail to pro-

vide an interpretable model—a model that is easily inter-

rogated to understand why it makes the connections and

correlations it does [14]. Finally, there are still open

questions as to the best way to include known physical

principles in machine learning models [32, 60, 75]. For

instance, we know invariants such as conservation prop-

erties, and we would want any learned model to respect

these laws. One approach to ensuring this might be to add

constraints to the models to restrict the data to certain

lower-dimensional manifolds. How this can be done effi-

ciently in data-driven models without injecting biases not

justified by physics is an important open research question

that still needs to be addressed.

Research Guidelines and Topical Examples

The principal guideline for ML and AI hypothesis gener-

ation and experimental design is caution. As noted above,

there are still many gaps in our knowledge and methods,

and skepticism is healthy. Like their simulation counter-

parts, the data-driven models must be verified to ensure

proper implementation before any attempt at validation is

done, and numerical simulation to generate the training

data can play a role in this process since the numerical

model is known. Validation against independent accepted

results must be done before using the developed techniques

to ensure their validity; it is important to verify that the

correlations learned by (for example) the autoencoder are

real and meaningful. Finally, the uncertainty of data-driven

models, a function of the uncertainty of the data and the

structure of the assumed model, should also be quantified.

It is important that the community develops metrics to

measure the success and progress for research under this

PRO related to the new science delivered. Certainly, the

rate and quality of data generated through ML- and AI-

enabled hypothesis generation and experimental design are

two important metrics that can be quantified. It will be

more difficult to measure the transformation of that data

into knowledge, since this step will still involve human

insight and creativity.

Modern ML and AI techniques are not sufficiently

mature to be treated as black box technologies. Both the

fusion and the data science communities will benefit from

close collaboration. In particular, since statistics is foun-

dational to both data science and experimental design,

there is an urgent need to engage more statisticians in

bridging the communities, as well as to advance the tech-

niques in ways that accommodate the characteristics of the

fusion problems. There will also be an immediate need for

data engineers who can help build the infrastructure to

efficiently and openly share data in the fusion community,

as it exists, e.g., in the high energy density (HED) and

climate communities. Such an effort by its very nature will

require close collaboration between the fusion scientists

and computer scientists with expertise in data management.

Data engineering will continue to be a challenge for the

fusion community, which has not yet defined community

standards or adopted completely open data policies. This

PRO will require large amounts of both simulation and

experimental data to have significant impact. These prob-

lems are not unique to the PRO, however (nor to the fusion

community), and will need to be addressed if ML and AI

are to deliver their full promise for the Fusion Energy

Sciences.

PRO 2: Machine Learning Boosted Diagnostics

Accurately and rapidly diagnosing magnetic confinement

plasmas is extremely challenging, and will become more

challenging for burning plasmas and power plants due

primarily to increased neutron flux and reduced access.

Applications of machine learning methods can ‘‘boost,’’ or

maximize the information extracted from measurements by

augmenting interpretation with data-driven models,

accomplishing systematic integration of multiple data

sources, and generating synthetic diagnostics (i.e. inference

of quantities that are not or cannot be directly measured).

Among the additional information extractable from diag-

nostic measurements through machine learning classifiers

are metadata features and classes that can enable or

improve the effectiveness of supervised learning for a host

of cross-cutting applications (synergistic with a machine

learning data platform: PRO 7).

Fusion Problem Elements

The advancement of fusion science and its application as

an energy source depends significantly on the ability to

diagnose the plasma. Thorough measurement is needed not

only to enhance our scientific understanding of the plasma
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state, but also to provide the necessary inputs used in

control systems. Diagnosing fusion plasmas becomes ever

more challenging as we enter the burning plasma era, since

the presence of neutrons and the lack of diagnostic access

to the core plasma make the set of suitable measurements

available quite limited. Hence there is a need in general to

maximize the plasma and system state information

extracted from the available diagnostics.

Thorough measurements of the intrinsic quantities

(pressure, density, fields) and structures (instability modes,

shapes) of a fusion plasma are essential for validation of

models, prediction of future behavior, and design of future

experiments and facilities. Many diagnostics deployed on

experimental facilities, however, only indirectly measure

the quantities of interest (QoI), which then have to be

inferred (Fig. 3). The inference of the QoI has traditionally

relied on relatively simple analytic techniques, which has

Fig. 3 The shot cycle in tokamak experiments includes many

diagnostic data handling and analysis steps that could be enhanced

or enabled by ML methods. These processes include interpretation of

profile data, interpretation of fluctuation spectra, determination of

particle and energy balances, and mapping of MHD stability

throughout the discharge

Fig. 4 Maximizing the

information extracted from the

large number of diagnostics in

tokamak experiments requires

extensive real-time and post-

experiment analysis that could

be enhanced or enabled by ML

methods (PCA principal

component analysis)
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limited the quantities that can be robustly inferred. For

instance, x-ray images of compressed inertial confinement

fusion cores are typically used only to infer the size of the

x-ray emitting region of the core. Similarly, the presence of

magnetohydrodynamic (MHD) activity internal to mag-

netically confined plasmas is inferred based on the signa-

tures of this activity measured by magnetic sensors located

outside the plasma. However, it is clear that these mea-

surements encode information about the 3D structure of the

core, albeit projected and convolved onto the image plane

and thereby obfuscated (Fig. 4). The use of advanced ML/

AI techniques has the potential to reveal hitherto hidden

quantities of this type, allowing fusion scientists to infer

higher level QoI from data and accelerating understanding

of fusion plasmas in the future.

Another example is the challenge of reconstructing

three-dimensional plasma equilibrium states in tokamaks

and stellarators consistent with observed diagnostics.

Reconstructed three-dimensional plasma profiles have a

number of important uses, such as, study of 3D effects

(edge-localized modes), inputs to disruption codes, real-

time feedback controls and others. In the absence of

accurate forward models, computationally expensive loop

refinement techniques [11, 39, 64] are presently the stan-

dard techniques for plasma reconstructions. Advanced ML/

AI techniques have the potential to not only discover non-

trivial and complicated data-driven physics models other-

wise inaccessible via traditional first-principle methods, but

also accelerate the discovery process after the models are

trained.

ML can also contribute to mapping from very noisy

signals to meaningful plasma behaviors. These relation-

ships are non-trivial and analytical forward models con-

structed using first-principle physics are rarely adequate to

capture the complicated interplay of device diagnostics on

the internal plasma states. ML approaches are ideal for

these purposes as they do not assume a priori knowledge of

inter-dependencies; on the contrary, the correlations and

non-trivial dependencies of the measured diagnostics on

the internal plasma state are learned from the experimental

data directly using ML approaches which are designed to

discover non-linear inter-dependencies and input–output

mappings that cannot be constructed via traditional for-

ward-only analytical methods. Since the number of diag-

nostic signals collected during experimental campaigns is

very large, systematic ML analysis can help to identify the

important signals and reduce the size of the critical data

stream for a given process.

Diagnostic data from fusion experiments tends to lack

detailed metadata and contextual information that would

enable automated comprehensive analysis and integration

of data from multiple devices. For example, tokamak

plasma discharges typically transition among several

confinement regimes (e.g. ohmic, L-mode, H-mode,

I-mode…), but the data are not routinely tagged with this

information. Manual inspection is typically required for

such identification. Similarly, many MHD instabilities can

be excited in the course of an evolving discharge, but these

are not routinely identified to tag discharge data for later

large-scale analysis. ML methods can be applied to create

classifiers for such phenomena, enabling complex inter-

pretation of diagnostic signals in real-time, between dis-

charges, or retrospectively.

This research area can make substantial use of simula-

tions to interpret and aid in boosting diagnostics. Simulated

data can be used to generate classifiers to interpret data and

generate metadata, to produce models to augment raw

diagnostic signals, and to produce synthetic diagnostic

outputs. Thus, a key challenge related to the fusion prob-

lems addressed with this PRO is production of the relevant

simulation tools to support the research process.

Machine Learning Methods

There are a number of existing ML approaches to create

new diagnostics out of noisy plasma measurement. One

approach is to treat desired higher-level diagnostics as

hidden random variables and then use Bayesian methods to

infer the most likely values of these variables given the

noisy measurements [68]. Such higher-level diagnostics

may include physics variables that are not well measured

by current diagnostics. Having such physics variables is

critical to understanding complex plasma behaviors.

In some cases, the forward models that could be used to

interpret the measured signals are quite expensive, which

has the practical impact that reconstructions of the physics

parameters is a specialized activity and only a small frac-

tion of the data is fully analyzed. Machine learning could

aid this analysis through generating surrogates for these

models, and through amortized inference techniques that

would accelerate the inverse mapping between observables

and the quantities of interest.

Even in traditional analysis of detector data, low reso-

lution and signal quality can be a barrier to analysis. Noise

reduction and super-resolution techniques can prove

invaluable in this sphere. The typical workflow for noise

reduction and super-resolution is a semi-supervised learn-

ing approach, where synthetic clean and high-resolution

data is created, and downscaled and corrupted in prepara-

tion for training [13].

Generation of useful metadata from raw diagnostic

signals requires applying varying levels of algorithmic

sophistication. Some features that are not yet identified in

existing datasets can be extracted and associated with rel-

evant signals through application of well-defined algo-

rithms or heuristics. For example, determination of
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tokamak plasma temperature edge pedestal characteristics

can be done with automated heuristic algorithms that

identify the location of the pedestal and fit local profiles to

selected nonlinear functions. Other features may be avail-

able in electronically-accessible logs or online documen-

tation. However, identification of many features of interest

now requires human inspection and/or complex processing

of multiple signals. For example, Thomson scattering

spectra often must be examined for validity, high signal-to-

noise, and low contamination from other light sources

before fitting to extract electron temperature and density.

Identifying the presence of a tearing mode island benefits

from human inspection of multiple measurements to cor-

relate magnetic signatures, profile measurements, confine-

ment impacts, and other characteristics that reflect mode

growth.

Machine learning (ML) methods can enable automation

of such complex inspection procedures by emulating or

replacing the assessment skills of human analysts.

Sophisticated mathematical algorithms that may execute a

series of analyses to arrive at a classification decision can

be encapsulated in more efficient, faster executing forms

that will enable large-scale application to very large fusion

datasets. Application of specific classification algorithms

can produce critical metadata that in turn will enable

extensive supervised learning studies to be accomplished.

Unsupervised learning methods will also allow identifica-

tion of features of interest not yet apparent to a human

inspector. For example, tokamak safety factor profiles of

certain classes may be signatures of tearing-robust oper-

ating states. A currently unrecognized combination of

pressure profile and current density profile may correlate

with an improved level of confinement.

Development and application of such algorithms to US

fusion data across many devices provides the opportunity

to study and combine data from a wide range of plasma

regimes, size and temporal scales, etc.… This capability

will accelerate and improve access to machine-independent

fundamental understanding of relevant physics.

In addition to formal machine learning methods,

sophisticated simulations will be required to produce the

classifiers and models needed to augment and interpret raw

diagnostic signals, as well as to produce synthetic diag-

nostic outputs. A key aspect of the research in this PRO

will therefore include coordinating the use of appropriate

physics model-based simulation datasets with application

of machine learning tools.

Gaps

The fundamental issue in ML/AI boosting of diagnostics is

the difficulty of validating the inferred quantities and

physics phenomena. This emphasizes the importance of

formulating the ML/AI problem in a way that is physically

constrained (i.e. informed by some level of understanding

of the relevant physical dynamics). Additionally, since the

relevant ML models must often be trained on simulation

data, which are themselves approximations of physical

reality, it is crucial to realize that any phenomena not

accounted for in the simulations cannot be modeled by

these methods.

Specialized tools are needed for the many types of

signal processing required for this PRO. These will require

dedicated effort due to the range of solutions and level of

specialization involved (e.g. tailoring for data interpreta-

tion algorithms for each device individually). Providing the

ability to fuse multiple signals reflecting common phe-

nomena and verify such mappings, as well as interpreting

and fusing data from multiple experimental devices, will

also be required.

In particular, enabling cross-machine comparisons and

data fusion will require standardizing comparable data in

various ways. Exploiting previous efforts (e.g. IMAS and

the ITER Data Model [26]), or developing new approaches

to standardizing data/signal models is an important enabler

of data fusion and large scale multi-machine ML analysis.

Normalization of quantities to produce machine-indepen-

dence is one approach likely to be important.

Research Guidelines and Topical Examples

Effectiveness of research in this PRO can be maximized

by:

• Checking proposed approaches by application to arti-

ficial known data such as that produced by simulations

• Developing and confirming methods for identifying

physically interesting phenomena and screening for

unphysical outputs

• Developing tools for and generating a large number of

simulations to enable boosting of data analysis, enable

generation of synthetic diagnostics, and contribute to

deriving classifiers for automated metadata definition

• Addressing specific needs of fusion power plant

designs, with relevant limitations to diagnostic access

and consistency with high neutron flux impacts on

diagnostics. Quantifying the degree to which machine

learning-generated and/or other models can maximize

the effectiveness of limited diagnostics for power plant

state monitoring and control.

PRO 3: Model Extraction and Reduction

Machine learning methods have the potential to accelerate

and, in some cases, extend our simulation-based modeling

approaches by taking advantage of the large quantity of
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data generated from experiments and simulations. In this

context, extraction methods may discover models to

understand complex data generating mechanisms, e.g.,

development of macroscopic descriptions of microscopic

dynamics. Similarly, the goal of model reduction is to

isolate dominant physical mechanisms for the purpose of

accelerating computation. These reduced models can be

used to accelerate simulations for scale bridging, complex

multicomponent engineered systems (e.g. tokamaks),

uncertainty quantification, or computational design.

Fusion Problem Elements

Progress in fusion research and engineering relies heavily

on complex modeling for analysis and design of experi-

ments as well as for planning and designing new devices.

Modeling for fusion is particularly challenging due to the

vast range of coupled physics phenomena and length/time

scales. The multi-scale/multi-physics modeling results in

significant computational burdens, leading first-principle

modeling efforts down the path to exascale computing and

motivating the development of reduced models to make

applications more practical. In order to maintain high

fidelity, these reduced models are still typically quite

computationally intensive, making activities like design

optimization and uncertainty quantification challenging.

Furthermore, gaps in theory exist that make direct appli-

cation of first-principle modeling difficult, leading to the

need for empirical models for certain phenomena.

The broadest fusion modeling approach, referred to as

whole device modeling, aims to perform time-dependent

predictive device modeling to assess performance for

physics and engineering design, as well as to provide

interpretive analysis of experimental results, combining

models and diagnostics to estimate the state of the system

during a discharge. These applications require uncertainty

quantification and often numerical optimization. Due to the

range of applications and requirements (e.g., scoping future

machines, planning a specific plasma discharge, real-time

forecasting of plasma behavior) there are a variety of

accuracy and calculation time requirements, motivating the

development of model hierarchies: targeting high fidelity

accuracy to faster-than-real-time execution.

Model-reduction aims to lower the computational cost

of models while still capturing the dominant behavior of

the system. This can be used to facilitate scale bridging and

time scale separation, e.g., by generating fast surrogate

models of phenomena at small spatial/temporal scales that

can be used within models for larger spatial/temporal

scales. As an example, in the area of studying plasma-

driven degradation of divertor and first wall materials in

tokamaks, molecular dynamics simulations provide insight

into microscopic mechanisms and can be linked to ab initio

simulations through interatomic potentials, which are sur-

rogate models for the energy of the quantum mechanical

system (see [73]). More generally, surrogate models can be

used to generate model closures for microscopic descrip-

tions. These are conventionally constructed by phe-

nomenological constitutive relations. However, coupling to

higher fidelity codes through the use of surrogate models

could yield better, faster solutions to the closure prob-

lem. While typical methods of model reduction often

require careful consideration of the trade-off between

computational cost and the accuracy lost by neglecting

terms in a model, machine learning tools provide efficient

methods for fitting and optimizing reduced models based

on data developed by high fidelity codes, which can in

many cases enable reduced models with significantly less

computational cost while maintaining high fidelity.

Despite significant advances in theory-based modeling,

gaps in understanding exist that could, in some cases, be

filled with dynamic models or model parameters derived

from experimental data. For example, empirical models for

turbulent transport coefficients, fast ion interactions, and

plasma boundary interactions could enable locally accurate

modeling despite the difficulty of accurately modeling

these coupled phenomena from first principles. This

activity, often referred to as model extraction or discovery,

can take the form of parametric models, e.g., fitting coef-

ficients of linear models, or non-parametric models, e.g.,

neural networks. Extracted models are a key aspect of the

scientific method and, interpretability of the resulting

model can help guide experiments and physics under-

standing and provide a link between theory and experi-

mental data.

Building on this idea of model extraction, ML can

augment the experiment/theory scientific workflow with

direct integration of models as a tool to drive innovation by

bridging the data heavy experimental side and the theory

side of the scientific enterprise. Figure 5 depicts this

Fig. 5 Machine learning-driven models can augment the scientific

method by bridging theory and experiment. (Image courtesy C.

Michoski, UT-Austin)
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interaction explicitly. Note the importance of the iteration

between theory and experiment, while this is representative

of the scientific method, returning to theory from a data

driven model is a step often skipped but essential to gen-

erate knowledge from ML techniques.

Machine Learning Methods

Model Reduction Many of the existing and widely used

machine learning tools can be directly applied to model

reduction in fusion problems. The specific tools to be used

will depend on the type of model and the planned appli-

cations of the reduced model. For models that are

approximately static, flexible regression approaches like

artificial neural networks and Gaussian process regression

can readily be used. The flexibility of these approaches can

enable fitting of available data to an arbitrary accuracy,

such that the approach is only limited by the availability of

high fidelity model data and the constraints on model

complexity (computational cost to train and/or evaluate).

Hyperparameter tuning methods, e.g., genetic algorithms

and Markov chain Monte Carlo (MCMC) methods, can be

used to optimize the trade-off of model accuracy and

complexity. For high dimensional problems, it may be

desirable to extract a reduced set of features from the input

and/or output space, which can be accomplished with

methods like Principal Component Analysis, autoencoders,

or convolutional neural networks (e.g. [4, 23, 33, 40]). For

developing reduced models of dynamic systems, approa-

ches to identifying stateful models, including linear state-

space system identification methods and recurrent neural

networks, like long short-term memory networks can be

used.

Model Extraction Machine learning methods also enable

extraction of powerful models from experimental data. By

performing advanced data analytics, new and hidden

structures within the data are extracted to develop an

accurate modeling framework, e.g. [27, 70]. This can lead

to discovery of new physics through direct use of data to

determine analytic models that generate the observed

physics, e.g. [6, 42, 53, 60]. In this way parsimonious

parameterized representations are discovered that minimize

the mismatch between theory and data, but also potentially

reveal hidden physics at play within the integrated multi-

physics and engineering systems. Machine learning can

also provide data-enabled enhancement [44]. In this pro-

cess, ML can be used to take theoretical models and

enhance them with data, or experimental data acquisition

can be enhanced with theory and models. Similarly, data

from empirical models can be used to enrich theoretical

computational models.

This area presents a number of opportunities for devel-

opment of novel methods for determining governing

equations of physical phenomena. The current approach to

deriving governing equations is to develop a hypothesis

based on theoretical ideas. This hypothesis is checked, and

challenged against experimental data. This process iterates

to some informal notion of convergence. Note that typi-

cally data is not actively integrated in a way that maxi-

mizes its utility. Approaches developed in response to this

PRO will allow the data to accelerate the development of

an unknown model.

The specific models developed will be highly dependent

on the end goal of the model itself. For instance, there may

be cases where the model is used as a black box for making

predictions. In this instance, the range of veracity of the

model would be based on a rigorous verification/validation

exercise. In other cases, the model will be used to enhance

understanding of the underlying mechanisms. Here it is

important that the model is interpretable so that a gov-

erning equation can be discovered. In either case, embed-

ding known physics in the learning process as a constraint

or prior will be essential to guarantee that the developed

model represents a physical process.

While still in its infancy, there has been some limited

development of these types of methods. Note that one

intriguing potential of the methods themselves is that, in

principle, they are not limited to a particular model that we

want to learn (e.g. in some cases they go beyond parameter

fitting), and that they should be able to extract the unknown

Fig. 6 ML techniques applicable to model derivation (1) sparse

regression [Image courtesy of E.P. Alves and F. Fiuza, SLAC], and

(2) operator regression [56]
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operator directly. However, careful validation of the

recovered model is necessary to guarantee physical con-

sistency and absence of unphysical spurious effects. For

ease of presentation, we reduce the approaches to two

broad classes of methods; symbolic and sparse regression,

and operator regression, see Fig. 6.

Sparse regression techniques use a dictionary of possible

operators and nonlinear functions to determine a PDE or

ODE operator that best matches the observations. It may

seem that a simple regression approach (e.g. linear

regression) maybe sufficient for this application. However,

this type of approach may yield an unwieldy linear com-

bination of operators whose relative combinations must be

weighed against each other for successful interpretation.

The key to sparse regression is to select the minimal set of

terms that match the observed data. In [9], compressive

sensing is used to discover the governing equations used in

nonlinear dynamical systems.

An early version of the operator regression is [60] where

the authors introduce a Physics Informed Neural Networks

(PINNs) technology. In this approach, a neural network is

trained to match observed function values with a penal-

ization of the model residual to ensure the function satisfies

a known PDE (e.g. the physics constraint), and/or a phys-

ical property (e.g. mass conservation). An alternative idea

is to learn the discrete form of the operators. In this way the

terms (coefficient functions, spatial operators, etc.…) of the

PDE are determined by an ML regression over the data.

Recent work in [56] explore learning the coefficients of a

Fourier expansion where the coefficients are represented by

a neural network. An alternative approach to operator

learning in the presence of spatially sparse experimental

data is based on using Generalized Moving Least Squares

(GMLS) techniques. These provide, in general, approxi-

mations of linear functionals (e.g., differential or integral

operators) given measurements or known values of the

action of the functional on a set of points. In the simple

case of approximation of a function, where the functionals

are Dirac’s deltas, given a set of sparse measurements,

GMLS does not provide a surrogate (e.g. a polynomial) in a

closed form, but a tool to compute a value of such function

at any given point. Specifically, such surrogate is a com-

bination of polynomial basis functions with space-depen-

dent coefficients [46].

Machine Learned Interatomic Potentials Interatomic

potentials (IAP) represent an important advance for

improving the quality of microscopic models used in fusion

device simulation. The growth of computational power and

algorithmic improvements have greatly increased our

ability to accurately calculate energies and forces of small

configurations of atoms using quantum electronic structure

methods (QM) such as Density Functional Theory (DFT).

Nonetheless, the O(N^3) scaling of these methods with the

number of electrons makes it impractical to apply QM

methods to systems bigger than a few hundred atoms.

Molecular dynamics simulations retain linear scaling in the

number of atoms by writing the energy and forces as some

kind of tractable function of the local atomic environment.

Conventional potentials use model forms based on partic-

ular chemical and physical concepts (Embedded Atom

Method, Bond Order). These produce compact computa-

tionally-efficient force models that provide good qualita-

tive models, but they cannot match QM results over a

reasonably broad range of configurations. In recent years,

machine-learning data-driven approaches have emerged as

an alternative. A very general set of local descriptors,

rather than a strict mathematical function, is used as the

model form. This means that the limiting source of error is

the availability of high-accuracy training data rather than

the functional form that describes the IAP. The ML-IAP

approach is especially useful for systems involving strong

electronic bonding interactions between atoms of different

chemical elements, because such interactions are difficult

to capture using simple IAP models designed for pure

elements. A rapid exploration of different regression

methods (ANNs, GP, parametric regression), different

local descriptors (Two-body and Three-body Symmetry

Functions, Moment Tensors, Fourier Invariants), and dif-

ferent kinds of training data has occurred, and many

promising approaches have been identified (GPA, ANN,

SNAP, Moment Tensors).

One potential approach is to use machine learning

techniques to construct these surrogates. Two classes of

technique have been identified, first a top-down training

technique that solves an inversion problem for IAP

parameters from physical properties. In the bottom-up

training, the ML model is trained to reproduce higher-ac-

curacy results from a more expensive calculation (e.g.

Density Functional Theory).

Gaps

The approaches discussed above demonstrate that ML

offers powerful new tools to tackle critical problems in

fusion plasma research. Thus, from both the computational

modeling, and fusion energy science perspectives, this is an

exciting new research topic that remains largely unex-

plored for basic plasma and fusion engineering. Ultimately

this could prove to revolutionize the process of scientific

discovery and improve the fusion communities’ toolset by

better integrating data from disparate components of an

engineered device. Given these opportunities, there are a

number of challenges that must be addressed.

An often-neglected task is the analysis of robustness and

numerical convergence of the surrogate. As in any other
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discretization technique, we need to make sure that the

surrogate (1) matches expected results (e.g. linear solution

of a diffusion problem for constant source terms), (2)

converges to ‘‘exact’’ or manufactured solutions as we add

training points to the learning set, or increase the com-

plexity of the surrogate (e.g. increase the number of layers

in a neural network). However, this is an idealized sce-

nario; in fact, we cannot guarantee convergence of a neural

network with respect to hyper parameters. In this regard, a

sensitivity analysis to network parameters (e.g., layers,

nodes, bias) would improve the understanding of how such

parameters affect the learning process and interact with

each other. Further, understanding how the machine

learning models are robust with respect to noisy and

uncertain data will be essential. Quantifying the effect of

this model and being able to answer the question of ‘‘how

much data is required’’ will guide the application of these

methods to regimes where they can be most effective.

A way to achieve these goals is to test the ML algorithm

on manufactured solutions and compare consistency tests

and numerical convergence analysis with standard dis-

cretization methods, for which the behavior is well

understood. An even better approach would be a mathe-

matical analysis of the algorithm that would provide rig-

orous estimates of the approximation errors.

According to the ML method being used, the enforce-

ment of physics constraints is pursued in different ways.

For PINNs, they are added as penalization terms to the

‘‘loss’’ function so that the mathematical model and other

physical properties are (weakly) satisfied through opti-

mization. For GMLS, the physics can be included in the

functional basis used for the approximation, e.g. basis

functions could be divergence free in case of incompress-

ible flow simulations. In the Fourier learning approach

conservation properties can be enforced using structural

properties when the model form is chosen. Simply learning

the divergence of the flux, as opposed to the ODE source

effectively enforces conservation. Additionally, the loss

function can also be modified to enforce that physical

properties are weakly satisfied.

When the set of model parameters to be estimated

becomes large, the learning problem could become highly

ill-conditioned or ill-posed (as for PDE constrained opti-

mization); this challenge can be overcome by adding reg-

ularization terms to the loss function (in case of

optimization-based approach), by increasing the number of

training points or improving their quality (e.g. better

location). Moreover, with larger parameter sets, and phy-

sics defined on large 3D and 2D domains, computational

cost for the training can be a significant factor. These

challenges are familiar to PDE-constrained optimization

that can suffer from very long runtimes because of the need

to solve the underlying PDE multiple times. This is

especially relevant for simulations of transient dynamics

where each forward simulation itself can be a large com-

putational burden.

Finally, given the intrinsic need for data in generating

these models, the quality and quantity of fusion science

data is critical for designing and applying methods. A

critical piece will be to instrument diagnostics with good

meta data and precisely record the type of data being

recorded, the particulars of the experiment (see PRO 2, ML

Boosted Diagnostics, and PRO 5, Extreme Data Algo-

rithms), the frequency of collection, and other relevant

descriptions of the data.

Research Guidelines and Topical Examples

Guidelines to help maximize effectiveness of research in

this area include:

• Tools must be made for a broad community of users,

with mechanisms for high availability, open evaluation,

cooperation, and communication

• Explicit focus on assessments and well-defined metrics

for: model accuracy, stability and robustness, regions of

validity, uncertainty quantification and error bounds

• Methods for embedding and controlling relative weight-

ing on physics constraints should be addressed

• Methods for managing uncertainty when combining

data

• Tools for validation and verification for models

• Open-data provision for trained models used in

publication

• Incorporation of end-user demands for interpretability,

ranges of accuracy

• Development of benchmark problems for initiating

cross-community collaboration

Candidate topics for model extraction and reduction

research include:

• Extraction of model representations from experimental

data, including turbulent transport coefficient scalings

• Generation of physics-constrained data-driven models

and data-augmented first-principle models, including

model representations of resistive instabilities, heating

and current drive effectiveness, and divertor plasma

dynamics

• Reduction of time-consuming computational processes

in complex physics codes, including whole device

models

• Determination of interatomic potential models and

materials characteristics

136 Journal of Fusion Energy (2020) 39:123–155

123



PRO 4: Control Augmentation with Machine
Learning

The achievement of controlled thermonuclear fusion criti-

cally depends on quantifiably effective and robust control

of plasma operating characteristics to maintain an optimal

balance of stability and fusion performance. This optimal

operating point must be sustained for months in a suc-

cessful power plant, with vanishingly small probability of

termination from system faults, plasma fluctuations, and

plasma instabilities. Such a demanding level of perfor-

mance and reliability in a mission-critical fusion power

plant can only be provided by the methods of mathematical

control design, which can be significantly augmented by

machine learning. This research opportunity involves the

development of ML methods and their application to the

derivation of models required for high reliability control;

development of real-time data analysis/interpretation sys-

tems to optimize measurements for control; and the design

of optimized trajectories and control algorithms.

Fusion Problem Elements

For an economical fusion power plant, fusion gain Q—

defined as output fusion power divided by the input

power—has to be large. Unfortunately, any attempts to

increase n (density), T (temperature), or sE (confinement

time), render plasma less stable and we hit stability limits

as illustrated in Fig. 7. The achievement of a commercially

feasible fusion power plant requires the optimization of the

properties of the plasma by controlling it to high perfor-

mance and away from instabilities which can be damaging

to the plant. Achieving these two goals (high performance

and stable operations) simultaneously requires a control

system that can apply effective mathematical algorithms to

all the diagnostic inputs in order to precisely adjust the

actuators available to a fusion power plant.

In addition to regulation of nominal scenarios and

explicit stabilization of controllable plasma modes, prox-

imity to potentially disruptive plasma instabilities must be

monitored and regulated in real-time. Robust control

algorithms are required to prevent reaching unsta-

ble regimes, and to steer the plasma back into the

stable regimes should the former control be unsuccessful.

On the rare occasion when the plasma passes these limits

and approaches disruption, the machine investment must be

protected with a robustly controlled shut-down sequence.

These tasks all require robust real-time control systems,

whose design is complex. The lack of a complete forward

model for which a provably stable control strategy can be

designed makes the task harder and motivates the use of

reduced models that capture the essential dynamics of

complex physics (e.g., the effect of plasma microturbu-

lence on profile evolution). ML-based approaches have

great potential in the development of real-time systems that

incorporate fast real-time diagnostics in decision making

and control of long-pulse power plant-relevant conditions.

Parallels to many of these challenges may be seen in the

development of controllers in autonomous helicopters,

snake robots, and more recently self-driving cars. In each

case, a complex dynamical system with limited models and

complex external influences has benefited from a variety of

ML-based controller development

[2, 12, 21, 35, 45, 65, 71].

A significant challenge to achievement of effective

fusion control solutions is optimal exploitation of diag-

nostics data. In order to extract maximum information from

the diagnostic signals available in a fusion experiment or

power plant, a large volume of data must be processed on

the fast time scales needed for fusion control. This implies

the need for tools for fast real-time synchronous acquisition

Fig. 7 Left: high performance for tokamak is achieved at the edge of the stable operation regime shown for a standard tokamak. Right: various

plasma stability limits are reached when components of fusion gain (Q), are increased [25]
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and analysis of large data sets. Sending all the information

gathered from available diagnostics to a central processing

system is not feasible due to bandwidth issues. ML offers

methods to analyze the large quantities of data locally, thus

sending along only the relevant information such as phy-

sics parameters or state/event classification (labels).

Another fusion control problem amenable to ML tech-

niques is the need for appropriate control-oriented models

for control design. Such models reduce the complexity of

the representation while capturing the essence of the

dynamic effects that are relevant for the control applica-

tion. Plasma models created to gain physics insight into

fusion plasma dynamics are generally complex and not

architected appropriately for control design purposes. They

usually include a diversity of entangled physics effects that

may not be relevant for the spatial and temporal scales of

interest for control while omitting the ones that are.

Additionally, the underlying differential equations of these

complex models are not written in a form suitable for

control design. Uncertainty measures, crucial for building

and quantifying robustness in control design, are also

generally missing from such physics models. Plasma and

system response models for control synthesis in general

should have the following characteristics:

• Should be dynamic models that predict the future state

of a plasma or system given the current state and future

control inputs

• Should have quantified uncertainty and uncertainty

propagation explicitly included

• Should span the relevant temporal and spatial scales for

actuation and control

• Should be fully automatic in nature (no need for

physicists to adjust parameters to converge or give

reasonable results)

• Should be lightweight in computational and data needs

since they may have to execute often with limited real-

time resources

There are several approaches to developing control-

oriented models, ranging from completely physics-based

(white box) models to completely empirical models

extracted from input–output data (black box models), with

models in between that use a combination of some physics

and empirical elements (grey box models). ML methods

can contribute significantly to both generation and reduc-

tion of control-oriented models, augmenting available

techniques for deriving both control dynamics and uncer-

tainty quantification. However, recent work [43] suggests

that such models need to preserve inherent constraints such

as mass or energy conservation requiring the development

and analysis of appropriate constrained training and

inference.

A third challenge to fusion control with strong potential

for application of ML solutions is the design of optimized

trajectories and control algorithms. High dimensionality,

high uncertainty, and potentially dynamically varying

operational limits (e.g. detection and response to an

anomalous event), complicate these calculations. For both

fusion trajectory and control design, information is com-

bined from a wide range of sources such as MHD stability

models, empirical stability boundaries (e.g. Greenwald

limit), data-based ML models for plasma behavior, fluid

plasma models, and kinetic plasma models. ML techniques

are effective in finding optimal trajectories and control

variables in these high-dimensional global optimization

problems with a diverse set of inputs, and may thus be

advantageous for fusion’s unique control challenges.

Not all fusion or plasma control problems require con-

tinuous real-time solutions. A significant challenge to

sustained high performance tokamak operation is deter-

mination of exception handling algorithms and scenarios.

Exceptions (as the term is used for ITER and power plant

design) are off-normal events that can occur in tokamaks

and require some change to nominal control in order to

sustain operation, prevent disruption, and minimize any

damaging effects to the device [24]. Because chains of

exceptions may occur in sequence due to a given initial

fault scenario, there is potential for combinatorial explo-

sion in exception handling actions, complicating both

design and verification of candidate responses. Data-driven

methods may enable statistical and systematic approaches

to minimize such combinatorial problems.

Machine Learning Methods

Potentially effective ML approaches to the fusion control

issues addressed in this PRO include: (1) hardware/soft-

ware combinations for fast analysis of sensor data at the

source using ideas of Edge-computing for ML, custom

computing using FPGAs etc.; (2) analysis of sensor data

using ML and physics knowledge to abstract physics

information in real or near real time; and (3) ML-based

reduction of the data in various ways to reduce the data

transfer. Figure 8 illustrates the elements of PRO 4 and

their relationship to the plasma control design and imple-

mentation process.

Gaps

Several gaps exist in capability and infrastructure to enable

effective use of ML methods for control physics problems.

These include availability of appropriate data, and struc-

turing of valuable physics codes to enable application to

control-level model generation.
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A key limitation that needs to be addressed to enable

ML approaches for control is the annotation and labeling of

data for application of relevant supervised regression

problems. It is anticipated that a nearly automated labeling

method for many events of interest is going to be devel-

oped. However, the sensitivity of the ML methods to

incorrect labeling may be problematic. Frameworks to

sanity check the ML mappings against expected physics

trends are not necessarily available and need to be devel-

oped. Depending on the ML representation used, the nav-

igation problem may or may not have an effective off-the-

shelf algorithm, which might warrant modification of

optimization/ML/AI approaches.

Because control design fundamentally relies on ade-

quate model representations, the nature of codes used in

generating such models sensitively determines the effec-

tiveness of model-based control. In the case of data-driven

approaches, codes and simulations that provide data for

derivation of control-oriented models must be configured

to enable large-scale data generation, and appropriate

levels of description for control models that respect con-

straints from physics [60]. The relevant codes should also

generate uncertainty measures at the same time, a capa-

bility missing from many physics codes and associated

post-processing resources at present. Methods of obtaining

control with quantified stability margins and robustness for

these types of combined continuous and discrete systems

needs to employed.

Research Guidelines and Topical Examples

Effectiveness of research in this PRO can be maximized

by:

• Ensuring research focuses on interpretations of mea-

surements that maximize the specificity of control-

related phenomena. For example, models or predictive

algorithms that provide outputs specific to particular

instabilities or plasma phenomena to be controlled are

most likely to enable effective control [7, 18].

• Providing variables that quantify relative stability,

controllability, or proximity to operational boundaries

• Creating real-time calculable quantities wherever pos-

sible, that provide sufficient lead time for control action

[16]

Fig. 8 Schematic of the interactions among different elements of PRO 4 and the roles they play in the plasma control process
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• Linking derived results to specific relevant temporal

and spatial scales for actuation and control that will lead

to well-defined control actions

• Following machine learning procedures that enable

physics constrained extrapolation to different operating

regimes, system conditions, or fusion devices

• Developing robust ML training methods with quantified

stability margins and uncertainty that would perform

robustly under the dynamic nature of the fusion plasma

PRO 5: Extreme Data Algorithms

There are two components to the Extreme Data Algorithm

priority research opportunity: (a) in situ, in-memory anal-

ysis and reduction of extreme scale simulation data as part

of a federated, multi-institutional workflow, and (b) inges-

tion into the new Fusion Data ML Platform (PRO 7) and

analysis of extreme scale fusion experimental data for real-

or near-real time collaborative experimental research. The

former research (a) is required because multiple fusion

codes are expected to use first-principle models on Exas-

cale computers with the size and the speed of the data

generation being beyond the capability of the filesystem,

rendering post-processing problematic. The workflow

applying these multiple fusion codes will involve multiple,

distributed, federated research institutions, requiring sub-

stantial coordination (see Fig. 9). The latter research (b) is

needed because the amount and speed of the data genera-

tion by burning plasma devices, such as ITER in the full

operation DT phase, are anticipated to be several orders of

magnitude greater than what is encountered today. Intelli-

gent ingestion into the Data ML Platform, not only the

storage of data but also for streaming and subsequent

analysis, can allow rapid scientific feedback from the

world-wide collaborators to guide experiments, thereby

accelerating scientific progress.

Fusion Problem Elements

(a) In-situ, on-memory analysis and reduction of

extreme scale simulation data

Exascale fusion codes, studying physics at first-principle

level, will produce massive amounts (* exabytes) of data

per run. It is well-known that this volume and velocity of

data cannot be streamed to the filesystem or located on

permanent storage for post-processing. Therefore, visual-

izing and interpreting the data as much as possible con-

currently from the same HPC memory (in situ), or other

network connected HPC memory, is required. Critical data

components can be identified, reduced, indexed and com-

pressed to fit the storage requirement and to allow for post-

processing. Otherwise, only a small fraction of the data can

be written to the file system and moved to storage. If this

data is not intelligently handled and critical pieces were not

saved, it is possible that the costly simulation would need

to be repeated. Automated AI/ML algorithms need to be

relied on.

Moreover, extreme scale first-principle simulations will

be needed to predict the evolution of the plasma profiles.

ML training utilizing the profile-evolution data from sim-

ulations on the present tokamaks may not be ideal in pre-

dictive profile evolution in possibly different physics

regimes, e.g. ITER plasmas. ML-analyzed and reduced

data on in situ compute memory must be utilized for this

purpose as well.

At the present time, physicists typically save terabytes

of data for post-processing, subjectively chosen from pre-

vious experience. Scientific discoveries are often made

from data that are not experienced before. Moreover, data

for deeper first-principle physics—such as turbulence–

particle interaction—are often too big to write to file sys-

tems and permanent storage.

Fundamental physics data from extreme-scale high-fi-

delity simulations can also be critically useful in improving

Fig. 9 Federated fusion

research workflow system

among a fusion power plant

experiment, real-time feedback

and data analysis operations,

and extreme-scale computers

distributed nonlocally. A smart

machine-learning system needs

to be developed to orchestrate

the federated workflow, real-

time control, feature detection

and discovery, automated

simulation submission, and

statistically combined feedback

for next-day experimental

design
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reduced model fluid equations. The greatest needs for the

improvement of the fluid equations are in the closure

terms—such as the pressure tensor and Reynolds stress.

Fundamental physics data from extreme-scale simulations

saved for various dimensionless plasma and magnetic field

conditions can be used to train ML that could lead to

improved closure terms.

(b) Extreme-scale fusion experimental data for real- or

near-real-time collaborative research

The amount of raw data generation by ITER in the full DT

operation phase is estimated to be 2.2 PB per day

(* 50 GB/s), on average, and 0.45 EB of data per year

[58]. Clearly, highly challenging data storage and I/O

speed issues lie ahead. Without developing a proper global

framework, the ability to efficiently store data for post-

processing and also for critical near-real-time feedback to

the control room, will not be possible. The sheer size and

velocity of the data from ITER or a DEMO burning plasma

device may not allow sufficiently rapid physics analysis

and feedback to the on-going experiment with present

methods. Data retrieval and in-depth physics study by

world-wide scientists may take months or years before

influencing the experimental planning.

A well-designed methodology to populate the Fusion

Data ML Platform can allow analysis of diagnostic data

streams for feature detection and importance indexing,

reduce the raw data accordingly, and compress them at or

near the instrument memory. The data also need to be

sorted, via indexing, into different tier groups for different

level analysis. While the reduced and compressed data are

flowing to the Data ML Platform, a quick and streaming

AI/ML analysis can be performed. Some scientists could

even be working on the virtual experiment, running in

parallel to the actual physical experiment. Various quick

analysis results can be combined into a comprehensive

interpretation via a deep-learning algorithm for presenta-

tion to ITER control room scientists.

Once the reduced and compressed data are in the ML

Data Platform, more in-depth studies will begin for further

scientific discoveries. Many of these studies may utilize

numerous quick simulations for statistical answers as well

as extreme scale computers for a high-fidelity study. New

scientific understanding and discovery results can be pre-

sented to experimental scientists for future discharge

planning.

Various AI/ML, feature detection, and compression

techniques developed in the community can be utilized in

the Data ML Platform. The federation system requires

close collaboration among applied mathematicians, com-

puter scientists, and plasma physicists. Prompt feedback for

ITER experiments could accelerate the scientific progress

of ITER and shorten the achievement time of its goal of

ten-times more energy production than the input energy to

the plasma.

Machine Learning Methods

Both topics require fast detection of physically important

features. Therefore, data generation must be followed by

importance indexing, reduction of raw data, and lossy

compression while keeping the loss of physics features

below the desired level. Both supervised and unsupervised

ML methods can be utilized. Correlation analysis in the x-v

phase space and spectral space can be a useful tool, not

often discussed in the ML community but amenable to ML

approaches. A key goal is to develop ML tools to meet the

operational (during and between-shot) real-time require-

ments. Highly distributed and GPU-local ML is required.

For time-series ML of multiscale physics, utilization of

large size high bandwidth memory (HBM), address-shared

CPU memory, or non-volatile memory-express (NVMe)

can be beneficial. Close collaboration with applied math-

ematicians and computer scientists is another essential

requirement. The wide range of AI/ML solutions devel-

oped for other purposes in the community should also be

utilized or linked to extreme data algorithm solutions as

much as possible.

Gaps

The main gaps are: (1) the identification and development

of various ML tools that can be utilized for fusion physics

and that are fast enough for real-time application to

streaming data at or near the data source, (2) the devel-

opment of the Data ML Platform that can utilize ML tools

for real-time data analysis, and suggest intelligent ML

decision from various real-time analysis results, (3) in the

case of the extreme-scale simulations, the predictive AI/

ML capability for accomplishing accurate plasma profile

evolution on experimental transport time scales based on

instantaneous flux information (current approaches are

mostly based on trained data from numerous simulations

on present experiments, which may not be applicable for

extrapolation into unknown physics regimes, such as may

be expected in ITER), (4) derivation of training data from a

small number of large-scale simulation runs, and (5)

increasing the collaboration among fusion physicists,

applied mathematicians and computer scientists, which will

be critical for the success of this PRO.

Research Guidelines and Topical Examples

As discussed in this section, real-time analysis of streaming

data will require fast and distributed ML and compression

algorithms, which necessitates a team effort including
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fusion physicists, applied mathematicians and computer

scientists. The International Collaboration Framework for

Extreme Scale Experiments (ICEE) is an example of such a

collaborative research activity [10]. These types of col-

laborative multidisciplinary activities need to be expanded

and extended to accelerate progress. A close collaboration

with ITER data scientists is also recommended.

Some specific examples include:

• Extracting parameter dependent families of features to

enable flexible post-processing

• The ability to utilize small representative data sets for

accurate and robust ML/AI training

• Robust and verifiable ML to ensure generalizability and

stability of detection

• Parallelizing ML/AI models in a distributed environ-

ment for rapid training

• ML algorithms that can rapidly/accurately detect

desires features in situ for data triage

• In-situ systems that can generate privileged metadata

(e.g. uncertainty, provenance)

• Addition of first-principle simulation data to the present

experimental data for predictive ML on ITER and

DEMO performance

PRO 6: Data-Enhanced Prediction

All complex, mission-critical systems such as nuclear

power plants, or commercial and military aircraft, require

real-time and between-operation health monitoring and

fault prediction in order to ensure high reliability sustained

fault-free operation. Prediction of key plasma phenomena

and power plant system states is similarly a critical

requirement for achievement of fusion energy solutions.

Machine learning methods can significantly augment phy-

sics models with data-driven prediction algorithms to

enable the necessary real-time and offline prediction

functions. Disruptions represent a particularly essential and

demanding prediction challenge for fusion burning plasma

devices, because they can cause serious damage to plasma-

facing components, and can result from a wide variety of

complex plasma and system states. Prevention, avoidance,

and/or mitigation of disruptions will be enabled or

enhanced if the conditions leading to a disruption can be

reliably predicted with sufficient lead time for effective

control action.

Fusion Problem Elements

Fusion power plants must have sophisticated forecasting

systems to enable sufficiently early prediction of fault

conditions to enable prevention or correction of such faults

and sustainment of high-performance operation.

Asynchronous plasma or system events that can occur

under fault conditions and require some active control

change are called ‘‘exceptions’’ in ITER and elsewhere.

Exceptions that threaten steady operation include

impending violation of controllability limits, problematic

variance in plasma or system performance, and failure of

key subsystems. While many exceptions can be detected as

they occur and trigger an ‘‘exception handling’’ response,

many must be identified with significant look-ahead capa-

bility to enable an effective response. The solution envi-

sioned in the ITER control forecasting system includes

Faster-than-Real-Time-Simulation (FRTS), as well as

direct projection with reduced models and extrapolation

algorithms to predict problematic plasma and system states

(see Fig. 10) [24]. It is expected that a viable and eco-

nomical power plant will require similar functions. Many

of these predictor algorithms can be enabled or enhanced

by application of machine learning methods.

Nominal, continuous plasma control action (see PRO 4)

must reduce the probability of exceptions requiring early

termination of a discharge to a very low level (be-

low * 5% of discharges) in ITER, and to a level compa-

rable to commercial aircraft or other commercial power

sources in a fusion power plant (� 10-9/s). In addition to

these levels of performance, effective exception detection,

prediction, and handling are required to enable ITER to

satisfy its science mission, as well as to enable the viability

of a fusion power plant. The complexities of the diagnostic,

heating, current drive, magnets, and other subsystems in all

burning plasma devices make these kinds of projections

highly amenable to predictors generated from large data-

sets. At the same time, the importance of the envisioned

Fig. 10 The ITER plasma control system (PCS) forecasting system

will include functions to predict plasma evolution under planned

control, plant system health and certain classes of impending faults, as

well as real-time and projected plasma stability/controllability

including likelihood of pre-disruptive and disruptive conditions.

Many or all of these functions will be aided or enabled by application

of machine learning methods
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applications to machine operation and protection place

high demands on uncertainty and performance quantifica-

tion for such predictors.

Prediction of plasma or system state evolution is

essential to enable application of controllability and sta-

bility assessments to the projected state. While FRTS

computational solutions may enable such projection suffi-

ciently fast integrated/whole device models, this function

may be aided or enabled by machine learning methods.

Prediction of plasma states with high probability of

leading to a disruption, along with uncertainty quantifica-

tion (UQ) to characterize both the probabilities and the

level of uncertainty in the predictive model itself, is a

particularly critical requirement for effective exception

handling in ITER and beyond [28]. ITER will only be able

to survive a small number of unmitigated disruptions at full

performance. Potential consequences of unmitigated dis-

ruptions include excessive thermal loads at the divertor

strikepoints, damaging electromagnetic loads on conduct-

ing structures due to induced currents, and generation of

high current beams of relativistic electrons which can

penetrate and damage the blanket modules. Methods to

mitigate disruptions have been and are being tested, but a

minimum finite response time of * 40 ms is inherent in

the favored mitigation methods. This means that a highly

credible warning of an impending disruption is required,

with at least a 40 ms warning time [41]. Although invoking

the mitigation action will minimize damage to a tokamak,

it will also interrupt normal machine operation for an

appreciable time, and therefore it is highly desirable to

avoid disruptions, if possible, and only invoke mitigation

actions if a disruption is unavoidable. This requires

knowledge of the time-to-disrupt, along with effective

exception handling actions that should be taken.

The principal problems are to determine in real time

whether or not a plasma discharge is on a trajectory to

disrupt in the near future, what is the uncertainty in the

prediction, what is the likely severity of the consequences,

and which input features (i.e. diagnostic signals) are pri-

marily responsible for the predictor output. In the event

that a disruption is predicted, a secondary problem is to

determine the time until the disruption event.

The physics of tokamak disruptions is quite compli-

cated, involving a wide range of timescales and spatial

scales, and a multitude of possible scenarios. It is not

possible now, or in the foreseeable future, to have a first-

principle physics-based model of disruptions. However, it

is believed that most disruptions involve sequential chan-

ges in a number of plasma parameters, occurring over

timescales much longer than the actual disruption time-

scale. These changes may be convolved among multiple

plasma parameters, and not necessarily easy to discern.

Very large sets of raw disruption data from a number of

tokamaks already exist, from which refined databases can

be constructed and used to train appropriate AI algorithms

to predict impending disruptions.

Machine Learning Methods

Prediction of plasma and system state evolution, and in

particular probability of key exceptions and potentially

disruptive conditions, will benefit from a broad swath of

machine learning techniques. The basic problem is quite

general: given the data on the current state and evolu-

tionary history of the system, predict the state evolution

over a specified time horizon with the times and proba-

bilities of key events that may occur up to that horizon.

Many approaches to classification and regression have

potential for successful application. Some state-of-the-art

examples include random forests, neural networks, and

Gaussian processes, although many approaches are

applicable.

Predictions from machine learning models trained on

large data sets have been employed in fusion energy

research since the early-1990s. For example, Wroblewski

et al. [74] employed a neural network to predict high beta

disruptions in real-time from many axisymmetric-only

input signals, Windsor et al. [72] produced a multi-machine

applicable disruption predictor for JET and ASDEX-UG,

Rea et al. [61] and Montes et al. [48] demonstrated use of

time series data and explicit look-ahead time windows for

disruption predictability in Alcator C-Mod, DIII-D, and

EAST (see Fig. 11), and Kates-Harbeck [33] demonstrated

use of extensive profile measurements in multi-machine

disruption prediction for JET and DIII-D with convolu-

tional and recurrent neural networks. Even with the

growing use of ML predictions for fusion energy science

applications, very little attention has been given to uncer-

tainty quantification. Due to the inherent statistical nature

of machine learning algorithms, the comparison of model

predictions to data is nontrivial since uncertainty must be

considered [67]. The predictive capabilities of a machine

learning model are assessed using both the model response

as well as the uncertainty, and both aspects are critical to

effectiveness of both real-time and offline applications.

Predicting plasma state evolution and the resulting

consequences are challenging tasks that typically require

the use of computationally expensive physics simulations.

The task will benefit from machine learning approaches

developed for making inference with such simulations.

Emulation is a broad term for machine learning approaches

that build approximations or surrogate models that can

predict the output of these simulations and do so over many

orders of magnitude. These emulators can then be used to

make fast predictions (e.g. what are the consequences of a

fault or disruption with some set of initial conditions) or
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solve inverse problems (e.g. what are the initial conditions

that likely caused some particular disruption). Deep neural

networks, Gaussian process, and spline models are state-of-

the-art approaches to emulation. General optimization and

Bayesian techniques are used for solving inverse problems

[22, 31, 36].

Gaps

Data availability is a noted gap in development of predictor

solutions. There are a number of data repositories, but no

standardized approach to data collection or formatting.

Further, much of the data is incompletely labelled (see

PROs 2 and 7).

There are a number of major gaps in the mathematical/

ML understanding. First, there is no accepted approach for

incorporating physics knowledge into machine learning

algorithms. Current solutions are mostly ad hoc and prob-

lem specific. Second, there is no unified framework for

incorporating uncertainty into certain types of models.

Models based on probability do this naturally, but other

approaches, deep neural networks, lack this basis. Ad hoc

solutions, such as dropout in neural networks, only partially

address this issue and may not provide desired results. In

addition, there is no solid framework for ensuring success

in extrapolation. Indeed, this may prove impossible [52].

A fundamental challenge to application of ML tech-

niques to predictors for ITER and beyond is the ability to

extrapolate from present devices (or early operation of a

commissioned burning plasma device) to full operational

regimes. The ability to extrapolate classifiers and predictors

beyond their training dataset and quantify the limitations of

such extrapolation are active areas of research, and will

certainly require coupling to physics understanding to

maximize the ability to extrapolate. In addition to advances

in ML mathematics, careful curation of data and design of

algorithms based on physics understanding (e.g. use of

appropriate dimensionless input variables, hybrid model

generation) are expected to help address this challenge.

Research Guidelines and Topical Examples

Approaches that incorporate uncertainty quantification,

such as those built on probabilistic models, have particu-

larly strong potential. These predictions will typically be

used to make decisions about control and mitigation. Well-

calibrated prediction probabilities and credible intervals are

needed for decision makers and algorithm to balance the

likelihood of events with the potential severity of

consequences.

Approaches that provide some hope of extrapolation are

also important. Machine learning models for these prob-

lems will necessarily be developed on small-scale plasma

and tokamak experiments and then applied to large scale

machines where training data is nonexistent and failure is

nearly unacceptable. Although extrapolation is always a

difficult task, approaches that are physics-informed give

greater confidence of success. Incorporating physical

principles and insight from physics simulations is a key

ingredient.

Finally, real-time performance for prediction is an

important requirement. The highest impact predictor

algorithms for real-time application will directly inform

control action, e.g. enabling regulation of relevant states

for real-time continuous disruption prevention or enabling

effective asynchronous disruption avoidance. Predictors

used for triggering of machine protection disruption

effects-mitigation techniques must ultimately be suffi-

ciently fast and reliable to facilitate this function in real-

time.

Any research that addresses the needs and guidelines

presented above is worthy of consideration. An inclusive

approach should be used when considering proposed

research topics. Given that, there are a number of specific

examples that could be envisioned.

Fig. 11 The left two plots compare the performances of machine-

specific disruption predictors on 3 different tokamaks (EAST, DIII-D,

C-Mod). The rightmost plot shows the output of a real time predictor

installed in the DIII-D plasma control system, demonstrating an

effective warning time of several hundred ms before disruption [48]
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Physics-informed machine learning is a broad area of

current research that seeks to incorporate physical princi-

ples into machine learning approaches. As an example,

these principles could be used to design the structure of a

neural network or the covariance function of a Gaussian

process. Incorporating physical principles would give

greater confidence in the robustness of machine learning

approaches and their ability to extrapolate.

Interpretable machine learning is also another broad area

of current research. This area seeks to develop machine

learning methods in which the ‘‘reasoning’’ behind the

predictions is understandable to the human user. Here

again, these approaches should give greater confidence in

robustness and extrapolations. Interpretable methods may

also make disruption mitigation more feasible by providing

clues to what signals the ML algorithm is using to make

prediction.

Uncertainty quantification is one of the guiding princi-

ples and could be a major research topic in this area. Many

of the most flexible approaches to machine learning, par-

ticularly deep neural networks, have poorly developed

notions of predictive uncertainty. Research into this area

has great potential because quantified prediction uncer-

tainty is an important component of the decision-making

process that the predictions feed.

Many machine learning methods are not robust to per-

turbations in inputs and thus give unstable predictions.

Research, such as the ongoing work in adversarial training,

is needed to address this issue [19].

Research into automated feature and representation

building is important as it connects with all aspects of this

problem. First, it makes prediction considerably simpler

when the features themselves are most informative. It also

has the potential to improve robustness and interpretability.

Bayesian approaches do a good job at quantifying

uncertainty, but work is needed to accelerate these methods

with modern estimation schemes like variational inference

[8]. This is particularly true for Bayesian inversion tasks to

solve for things like initial and boundary conditions that are

crucial in disruption mitigation.

Multi-modal learning is concerned with machine learn-

ing approaches that combine disparate sources of infor-

mation [29] This kind of work is crucial in the disruption

problem where data from many sensors is combined to

make predictions.

PRO 7: Fusion Data Machine Learning Platform

The majority of present experimental data repositories for

fusion are designed for simultaneously visualizing rela-

tively small amounts of data to support both effective

consumption in the control room as well as post-experi-

ment studies. Existing data repositories are small on the

scale of ITER’s anticipated needs and for Exascale simu-

lations (there are no such general repositories for simula-

tion data). ML/AI workflows need to read entire data

repositories rapidly, something that present systems are not

designed to efficiently accomplish. Therefore, this PRO

addresses the need for a Data Platform dedicated to the

needs of the Fusion community for ML/AI workflows. The

vision is that this system (see Fig. 12) will provide unified

management of both experimental and simulation data,

deal intelligently with compression, allow rapid parallel

and distributed access for remote/collaborative use, enable

selective access for ML and analytics, and contain all the

required metadata to maximize the ability to perform large

scale supervised learning.

Fusion Problem Elements

There is presently an enormous amount of data already

available from the many fusion experiments that have been

operating worldwide for decades. The devices presently in

operation continue to produce amounts of data that increase

steadily and yield richer resources for data-driven methods

year by year. The advent of very long pulse devices, both

already operating and soon to be operating, with even

larger diagnostic arrays than historically available, will

rapidly multiply the amount of fusion data produced per

year worldwide. The large amount of experimental data

presently available and growing rapidly has been demon-

strated by the long history of ML/AI applications in fusion

to be sufficient to enable significant knowledge amplifica-

tion for accelerated advancement of fusion. Perhaps even

more exciting than the potential of knowledge-extraction

from experimental data alone, the emerging ability to

produce simulation data on extreme scales will increas-

ingly offer opportunities to augment this large

Fig. 12 Vision for a future fusion data machine learning platform that

connects tokamak experiments with an advanced storage and data

streaming infrastructure that is immediately queryable and enables

efficient processing by ML/AI algorithms
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experimental data supply in targeted ways. In particular,

the production of simulation data targeted at known gaps in

physics understanding will enable integration with experi-

mental data to bridge these gaps and produce specific new

understanding in an extremely efficient way.

However, currently the data available to fusion scientists

is not ‘shovel ready’ for doing ML/AI. The causes of this

are varied, but include differing formats, distributed data-

bases that are not easily linked, different access mecha-

nisms, and lack of adequately labeled data. In the present

environment, scientists performing ML/AI research in the

Fusion community spend upwards of 70% of their time on

data curation. This curation entails finding data, cleaning

and normalization, creating labels, writing data in formats

that fit their needs, and moving data to their ML platforms.

In addition, ML data access patterns perform poorly on

existing fusion experimental data ecosystems (including

both hardware and software) that are designed to support

experiments and therefore present a major bottleneck to

progress.

In contrast to centralized experimental data repositories,

fusion simulation data is typically organized by individuals

or small teams with no unified method of access or dis-

covery. Therefore, performing any ML analysis on simu-

lation data often requires seeking out the simulation

scientist or having the ML analyst run their own simula-

tions. Making integrated use of data across different sim-

ulation codes is impractical because of the critical barriers

of data mapping and non-interoperability of codes and

results databases.

An attempt at standardization of data naming conven-

tions in the fusion community is being addressed by the

ITER Integrated Modeling and Analysis Suite (IMAS),

which provides a hierarchical organization of experimental

and modeling data. This convention is rapidly becoming a

standard in the community, adopted by international

experiments as well as international expert groups such as

ITPA. The ITER system provides a partial technical solu-

tion for on-the-fly conversion of existing databases to the

IMAS format, although with significant limitations and

inefficiencies. The effort to map US facilities experimental

data to IMAS is only in the early stages, but it provides a

candidate abstraction layer that could be used to access

data from US fusion facilities in a uniform way.

Data ecosystems and computing environments are crit-

ical enabling technologies for data-driven ML/AI efforts.

Adherence to high performance computing (HPC) best

practices and provisioning of up-to-date, modern software

stacks will facilitate effective data ecosystems and com-

puting environments that can leverage state-of-the-art ML/

AI tools [59]. At present, no US fusion facility provides a

computing hardware infrastructure sufficient for the ML

use case and development of new data ecosystems and

computing environments is imperative.

Machine Learning Methods

Development of an automatically populated Fusion Data

ML Platform for both experimental facilities and simula-

tion codes requires proper consideration of the use cases

and requirements of AI algorithms for fusion applications.

These include production and storage of required metadata

and labels. As new feature definitions or extraction algo-

rithms are defined, re-processing existing data may be

necessary. Presently, the generation of labels and prove-

nance contexts for data sets is an extremely labor-intensive

effort. As a result, it tends to be forgone for most fusion

data, with negative consequences for practical application

of ML techniques. To address this problem, development

of the data platform should consider applying ML

approaches such as supervised and unsupervised classifiers

or surrogate model generation as a way to provide auto-

mated partial metadata information for the archived data.

Practically, this should include freely available libraries

such as TensorFlow [1], PyTorch [55], Keras [3], etc. Such

approaches include:

• Unsupervised anomaly detection

• Long-Short-Term Memory (LSTM) time series regres-

sion and clustering

• Convolutional Neural Networks (CNN) for image data

• Natural Language Processing (NLP) methods to derive

labels from user annotations and electronic log books

• Synthesis of heterogeneous data types over a range of

time scales

• ML-based compression of data

Because there may be no one-size-fits-all solution for

storing and accessing fusion data, it is expected that effi-

cient retrieval of data will require advanced algorithms to

determine the best manner to plan execution, much like the

query planner in a traditional relational database. This

could take the form of a heuristic determination, but could

also be implemented as an ML algorithm that learns how to

determine the most efficient access patterns for the data.

Still, the development of the Fusion Data ML Platform will

be founded on a number of general data access patterns

upon which more advanced data retrieval can be devel-

oped. These include, for example, selective access to data

sub-regions, retrieval of coarse representations, or direct

access to dynamic models with adaptive time sampling and

ranges as well as data with limited (bounded) accuracy. A

key characteristic is that in all cases data movements

should be limited to the information needed, and data

transfers should adopt efficient memory layout that avoids

wasteful data access, which has the potential to penalize
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performance and energy consumption dramatically in

modern hardware architectures.

Gaps

Today research in Fusion for ML/AI is hampered by

incomplete datasets and lack of easy access, both by

individuals and communities. Current data sets for exper-

imental and simulation data do not have sufficiently mature

metadata and labeling, which is required for machine

learning applications. Attaching a label to a dataset is a

critical step for using the data, and the label will be task-

specific (e.g. plasma state is or is not disrupting). Fur-

thermore, there is no centralized and federated data

repository from which well-curated data can be gathered.

This is true for both domestic facilities and simulation

centers, as well as international facilities. This gap pro-

hibits the use of the large volumes of fusion data to be

analyzed with ML-based methods. A targeted effort is

needed to make it easy to create new labeling for existing

and future data collection and to be able to index the

labeling information efficiently.

Functional requirements and characteristics of gathering

simulation data tend to be very different from those gov-

erning access of experimental data. While most experi-

mental data are available in a structured format (e.g.

MDSplus), simulation data is often less standardized and

frequently stored in user directories or project areas on

HPC systems. Mechanisms for identifying relevant states

of the simulation code (e.g. versions, corresponding run

setups) are likely required to group simulation output from

each ‘‘era’’ of the physics contained in that code and input/

output formats read and written by the code. Ultimately,

this is not fundamentally different from experiments, which

often undergo periodic ‘‘upgrades,’’ configuration changes,

or diagnostic recalibrations. In both cases, proper inter-

pretation of the data stored in a given file or database

requires the appropriate provenance information both for

proper encoding/decoding and for informed interpretation

(e.g., after recalibration, the same data may be stored in the

same way but should be understood differently).

One potential hurdle for producing a large fusion data

repository is the incentive to deposit the most recent, high

quality experimental and simulation data into a data center

shortly after data creation. There are data protection issues

for publication and discovery, maturity and vetting of data

streams for errors that would need to be re-processed, or

potential proprietary status considerations. Incentives must

be provided for the community to share data in ways that

serve both the individual and community as a whole.

Demonstrating the usefulness for a community-wide data

sharing platform, and drawing from experience in other

communities (e.g. climate science [63] or cosmology), are

potential means to address this gap.

Existing hardware deployments are not designed for the

intense I/O and computation generally required by ML/AI

[38]. Currently most large-scale computing hardware is

optimized for simulation workloads and heavily favors

large parallel bulk writes that can be scheduled predictably.

This leads to unexpected bottlenecks when creating and

accessing the data. This gap needs to be addressed for a

successful usage of ML/AI science to support fusion

research. As a commonly-encountered co-design problem

in which the interaction between the software/algorithmic

stack and the physical hardware are tightly coupled, this

gap should be solvable with approaches that properly

account for their complementary roles in such use cases.

Research Guidelines and Topical Examples

The workshop highlighted several primary research direc-

tions that will help the fusion community fully exploit the

potential of ML/AI technology. This section summarizes

several key research guidelines for the development of a

community Fusion Data ML Platform (see Fig. 13).

Data layouts, organization, and quality are fundamental

to storing, accessing, and sharing of fusion data. While

smaller metadata may be stored in more traditional data-

bases, large simulation and imaging data require specific

work for separate storage to make sure that they do not

overwhelm the entire solution. Key aspects to consider

involve addressing a variety of data access patterns while

avoiding any unnecessary and costly data movement as

demonstrated in the PIDX library for imaging and simu-

lation data [37]. For example, access to local and/or

reduced models in space, time, or precisions should be

achieved without transferring entire data that is simplified

only after full access. The heterogeneity of the data may

require building different layouts for different data models.

Scaling to large data models and collection has to be

embedded as a fundamental design principle. Data quality

will also be an essential research direction since each data

model and use case can be optimized with proper selection

of a level of data quality and relative error bounds. Such a

concept should also be embedded as a fundamental design

principle of the data models and file formats.

Interoperability with standardized data as it is being

pursued under the ITER project is a major factor. Unfor-

tunately, the ITER process does not yet fully address the

relevant use cases with the development of the data man-

agement infrastructure. Specific activities will be needed to

develop an API that is compatible with IMAS and allows

effective interoperation while maintaining internal storage

that is amenable to high performance ML algorithms.
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Interactive browsing and visualization of the data will be

a core capability that can enable, for example, a user to

verify and update labels generated automatically in addi-

tion to creating manual labels. In addition, ML applications

greatly benefit from interactive data exploration capabili-

ties. A key advantage is the adjustment and ‘‘debugging’’

of ML models based on the exploration of the data

involved in different use cases. In fact, this will be a critical

enabling technology for the development of inter-

pretable models via interactive exploration of uncertainties

and instabilities in the outcomes based on variations of the

input labels [30].

Streaming computation and data distribution are capa-

bilities that are at the core of the community effort. It can

allow local development of modern repositories that can be

federated as needed and as permitted by data policies

without the hurdle of building any mandatory centralized

storage. Software components will need to be developed to

expose the storage and facilitate the development of

common interfaces (e.g. RESTful API). This would not

preclude specific efforts that may require more specialized

interfaces. Easily deployable and extensible technologies

such as Python and Jupyter can be used as scripting layers

that expose advanced, efficient components developed in

more traditional languages such as C?? [54].

Transparent data access with authentication are tech-

nologies that are essential for practical use in a federated

environment. Automated data conversion, transfer, retrie-

val, and potential server-side processing are capabilities

that can become major performance bottlenecks and

therefore need to be addressed with a specific focus. Secure

data storage, based on variable requirements, must be

provided, but authentication systems cannot block scien-

tists and engineers from performing their work. Similarly,

the latencies due to data transfers need to be limited. Ser-

ver-side or client-side execution of queries need to be

available and selected intelligently to maximize the overall

use of the available community infrastructure.

Reproducibility will be a core design aspect of the data

platform. Careful versioning of all the data products, for

example, will allow the use of the same exact data for

verification of any computation. Complete provenance

tracking of the data processing pipelines will also make

sure that the same version of a computational component is

used. While absolute reproducibility may lead to extreme,

unrealistic solutions, the fusion community will need to

advocate for proper tradeoffs that allow for sufficient

ability to compare results over time (e.g., with published

and versioned code and datasets) while maintaining an

agile infrastructure that allows fast-paced progress.

Foundational Resources and Activities

Effective large-scale application of machine learning

methods to fusion challenges relies on a substantial amount

of infrastructure, foundational resources, and supporting

activities. These include experimental fusion facilities and

ongoing research in this area; advancement in theoretical

fusion science and computational simulation; supported

connections among university, industry, and government

Fig. 13 Unified solution for experimental and simulation fusion data. Scalable data streaming techniques enable immediate data reorganization,

creation of metadata, and training of machine learning models
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expert groups in the relevant fields; and establishing con-

nections to ITER and other international fusion programs.

High performance computing and exascale computing

resources underpin virtually all activities identified in this

report. Continued development of ML/AI based methods

will further increase the requirements associated with these

resources, for example, at NERSC (capacity) and OLCF/

ALCF (capability). It is difficult to estimate the real future

needs, which will often be specific to the problem/question

at hand. Capacity increases will be critical for low-reso-

lution simulations, while the higher resolution ones will

require improvements in capabilities. With approaches that

are data driven, a lot will depend on how much training is

done and at what scale. The other drive for the increase in

computing demands may be simply the ease of application

of UQ and design optimization techniques that were pre-

viously out of reach.

Because the science acceleration made possible by ML/

AI mathematics depends on data-driven or derived algo-

rithms, strong experimental programs that produce large

quantities of specifically useful data are critical to the

effort. Close engagement between ML/AI efforts and rel-

evant components of experimental programs can maximize

the efficiency and effectiveness of ML/AI applications in

extracting additional knowledge. Efforts to format and

curate experimental data at point of generation are

important for the envisioned Fusion Data ML Platform to

best enable use of datasets for large scale analysis.

Specific research programmatic connections between

fusion experimental and theoretical programs organized

around and dedicated to exploiting ML methods are

essential to enable effective use of these transformational

approaches. Close community coordination will be instru-

mental in ensuring data and physics representations are

common to experimental efforts and theory/modeling

community simulations. A focus of combined teams on

ML/AI applications with common science goals will

enhance and exploit synergies available.

Advancing fusion through ML/data science is a complex

enough endeavor that it requires cross-disciplinary teams

of applied mathematicians, machine learning researchers,

and fusion scientists. One reason is that the disparate tasks

of modeling, experimentation, and analysis of data coming

from experiments and model outputs require an iterative

process that may eventually lead to new discoveries. With

the increasing emphasis on algorithmic data analysis by

researchers from various fields, machine learning

researchers regularly call for clarifying standards in

research and reporting. A recent example is the Nature

Comment by Google’s Patrick Riley [62], which focuses

on three of the common pitfalls: inappropriate splitting of

data (training vs test), inadvertent correlation with hidden

variables, and incorrectly designed objective functions.

Negative effects of such pitfalls can be minimized in var-

ious ways, all requiring awareness of potential vulnera-

bilities, and diligence in seeking mitigation methods. For

example, data splitting into test and training sets typically

depends on the randomness of the process, but is frequently

done in ways that preserve trends and undesirable corre-

lations. Splitting in multiple, independently different ways

can help limit such problems. Consideration of the effects

being studied can also help guide a process of data selec-

tion that is not necessarily random, but specifically seeks to

produce appropriate diversity in the data sets. Meta-anal-

ysis of initial training results can serve to illuminate hidden

variables that mask the desired effects. Iterative approaches

that challenge the choice of objective functions and pose

alternatives can help reduce fixation on objectives that

address an entirely different problem from that intended.

Higher-order approaches to help avoid such pitfalls include

applying ML methods in teams made up of experts in the

relevant fusion science areas and experts in the relevant

areas of mathematics, and challenging results with com-

pletely new data generated separately from both training

and test suites.

Fusion energy R&D provides unique opportunities for

data science research by virtue of the amount of data

generated through experiments and computation. Most of

the datasets studied and used by ML/AI come from non-

scientific applications, and so the data produced by FES are

unique. The computing resources available at the various

DOE laboratories provide additional appeal to university

researchers.

Direct programmatic connections from ML/AI efforts to

the ITER program and other international fusion efforts are

essential to make best use of emerging data in the coming

burning plasma era. In addition to ITER, strong potential

exists for synergies through program connections with

international long pulse superconducting devices including

JT-60SA, EAST, KSTAR, and WEST. Other developing

fusion burning plasma designs and devices offering

potentially important connections include SPARC,

CFETR, and a possible US fusion pilot plant.

Summary and Conclusions

Machine learning and artificial intelligence are rapidly

advancing fields with demonstrated effectiveness in

extracting understanding, generating useful models, and

producing a variety of important tools from large data

systems. These rich fields hold significant promise for

accelerating the solution of outstanding fusion problems,

ranging from improving understanding of complex plasma

phenomena to deriving data-driven models for control

design. The joint FES/ASCR research needs workshop on
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‘‘Advancing Fusion Science with Machine Learning’’

identified several Priority Research Opportunities (PROs)

with high potential impact of machine learning methods on

addressing fusion science problems. These include Science

with Machine Learning, Machine Learning Boosted

Diagnostics, Model Extraction and Reduction, Control

Augmentation with Machine Learning, Extreme Data

Algorithms, Data-Enhanced Prediction, and Fusion Data

Machine Learning Platform. Together, these PROs will

serve to accelerate scientific efforts, and directly contribute

to enabling a viable fusion energy source.

Successful execution of research efforts in these areas

relies on a set of foundational activities and resources

outside the formal scope of the PROs. These include con-

tinuing support for experimental fusion facilities, theoret-

ical fusion science and computational simulation efforts,

high performance and exascale computing resources, pro-

grams and incentives to support connections among uni-

versity, industry, and government experts in machine

learning and statistical inference, and explicit connections

to ITER and other international fusion programs.

Investigators leading research projects that strongly

integrate ML/AI mathematics and computer applications

must remain vigilant to potential pitfalls that have become

increasingly apparent in the commercial ML/AI space. In

order to avoid errors and inefficiencies that often accom-

pany steep learning curves, these projects should make use

of highly-integrated teams including mathematicians and

computer scientists having high levels of ML domain

expertise with experienced fusion scientists in both

experimental and theoretical domains. In addition to per-

sonnel and team design, projects themselves should be

developed with explicit awareness and mitigation of known

potential pitfalls. Development of training and test sets in

general should incorporate methods for confirming ran-

domization in relevant latent spaces, supporting uncertainty

quantification needs, and enabling strong interpretability

where appropriate. Specific goals and targets of each PRO

should be well-motivated by need to advance understand-

ing, development of operational solutions for fusion devi-

ces, or other similar steps identified on the path to fusion

energy.

Burning plasma experiments such as ITER, and even-

tually engineering test or pilot plant reactors, introduce a

combination of particular challenges to the application of

ML/AI methods. For example, how can one apply data-

driven methods before specific data is available on a device

such as ITER? Can actual operational solutions be applied

to a reactor, if data-driven algorithms are very sensitive to

the details of a particular installation? There are several

potential approaches for enabling use of such methods

before and as data becomes available. Gradual evolution of

models and operational solutions during the ITER research

plan (which develops over more than a decade before DT

Q = 10 scenarios are expected to be explored) may be

possible, along with similar potential for transfer learning

development of relevant models in the commissioning

process of a reactor. In addition, development of dimen-

sionless, machine-independent results that can be trans-

ferred to new devices may be possible with minimal need

for transfer learning (augmentation of an initial model).

Establishing the actual reliability of such approaches will

require significant research before application to mission-

critical environments (and it is possible such approaches

will not prove sufficiently reliable, and more traditional

operations and control solutions will be required for

operating reactors).

The high-impact PROs identified in the Advancing

Fusion with Machine Learning Research Needs Workshop,

relying on the highlighted foundational activities, have

strong potential to significantly accelerate and enhance

research on outstanding fusion problems, maximizing the

rate of US knowledge gain and progress toward a fusion

power plant.
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Glossary of Machine Learning Terminology

Artificial intelligence

(AI)

The study of computational

and algorithmic methods for

emulating functions generally

viewed as requiring (human)

intelligence
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Big data A general term referring to the

phenomenon of large quantities

of data available in various

fields along with rapidly

growing processing and

memory power, enabling use

of algorithms and data

management approaches that

exploit such large data

quantities (and quality) for

statistical inference

Classification In the context of machine

learning the mathematical

process of separating a (large)

parameter space into regions

(classes) that share common

characteristics. Also, the

generation and operation of an

algorithm that performs such

classification for new input

data

Convolutional neural

network (CNN)

A type of neural network that

performs a mathematical

convolution filtering function

on the data before passing the

results to succeeding layers of

the network. Typically refers to

a multi-layer perceptron

architecture which embeds

such convolution filtering

processes

Cost function A mathematical function that

represents a penalty or ‘‘cost’’

whose minimization is used as

a metric for optimization of

some algorithm. Minimizing

cost functions that represent

mapping errors or worsening

performance in some process

can produce algorithmic

solutions with high accuracy or

otherwise desired levels of

performance

Data driven algorithms Mathematical algorithms

whose behavior is defined on

the basis of data analysis (e.g.

determination of neural

network weights and

thresholds from training data)

and are intended to operate on

additional/separate data (first

test data, then application data)

to produce some desired

analytical outcome

Deep learning A general term referring to use

of several performance-

enhancing approaches to

machine learning typically

including many-layered

(‘‘deep’’) neural networks,

recurrent neural networks, and

convolutional neural networks

Extreme data A general term referring to

amounts and behavior of data

streams that occur at

challenging levels for the

present capability of networks

computer platforms,

acquisition systems, and

human systems, often

including limitations imposed

by human organizations and

collaboration. See also

Extreme Scale

Extreme scale Computer algorithms data

sizes, and data stream scales

that challenge the present state

of the art for data handling and

computing, often including

limitations imposed by human

organizations and

collaboration. See also

Extreme Data

Hyperparameters A parameter used to control the

learning process in developing

a machine learning algorithm.

For example the width and

depth chosen for a neural

network (i.e. number of layers,

and number of neurons in each

layer) constitute important

hyperparameters for typical

neural network problems
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Loss (or loss function) A function that maps the

results of an operation to a new

quantity representing some

performance metric or ‘‘cost’’

associated with the operation.

Often the loss is a measure of

the difference between the true

value of (output) data from a

data set and an algorithm’s

predicted value of that output.

The loss (function)

characterizes the success of the

algorithm for a given set of

data and thus enables

optimization of the algorithm

on that basis

Machine learning (ML) The field of computational

mathematics that deals with

algorithms whose behavior is

determined by data rather than

explicit programming. It thus

encompasses methods of data

analysis that automate the

generation of algorithms on the

basis of data and defined

performance metrics

Multi-layer perceptron

(MLP)

A type of neural network

consisting of multiple layers of

neurons that act as perceptrons

(i.e. threshold-activated

functions that perform a binary

classification operation) in

processing signals and passing

the result to succeeding layers

Neural network (NN) A network of interconnected

neurons either biological or

artificial. Artificial neural

networks typically consist of

layers of neuron functions,

each of which performs an

‘‘activation function’’

operation based on its input

signals that results in a

threshold behavior of the

output, which is passed to

succeeding neurons or layers of

neurons

Reinforcement learning A type of machine learning in

which a software agent takes

action based on a system

environmental state in order to

maximize a cumulative reward.

Reinforcement learning-trained

algorithms have proven

extremely successful in

navigating completely-

specified environmental

domains including the games

of chess, shogi, and Go, as well

as many video games

Receiver operating

characteristic (ROC)

curve

A curve characterizing the

performance of an algorithm

by plotting the True Positive

rate versus the False Positive

rate of the process. Originally

applied to radar signal

interpretation and decision-

making the ROC is a

fundamental way to

characterize performance of

classification algorithms

Supervised learning A form of machine learning in

which a mapping algorithm is

determined from a set of

labeled example input–output

pairs. A supervised learning

algorithm typically analyzes a

set of training data to produce a

desired mapping and applies

the resulting mapping to a

specified test set to quantify

performance outside the

training data. See also

Unsupervised Learning

Test set Data set used to test the

performance of an algorithm

trained on a training set of data.

Performance metrics often

used include accuracy and

precision of prediction as well

as extrapolability beyond the

input data domain used for a

training set
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Training set Data set used to train an

algorithm to accomplish a

given goal (e.g. minimization

of a cost or loss function

classification of a data space,

matching of input–output

characteristics)

Transfer learning An application of machine

learning methods that seeks to

apply knowledge gained in

solving one problem to solving

a second problem that is

(typically) related in some

way. Examples include

adapting and extending a

neural network trained on

images of one type (e.g. cats)

in order to enable identification

of images of a second type

(e.g. dogs)

Universal approximation

theorem

Theorem that demonstrates that

a neural network of sufficient

width in number of neurons

and (at least) one hidden layer,

can fit an arbitrary continuous

function provided the inputs

are limited to a finite range

Unsupervised learning A form of machine learning

that seeks to identify

previously-unrecognized

patterns in an unlabeled dataset

with minimal human

supervision in the process. See

also Supervised Learning
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